// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert CHANNEL_TILE % 8 == 0 $assert CHANNEL_TILE >= 8 $assert ROW_TILE >= 1 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include #include #include void xnn_f16_vmulcaddc_minmax_ukernel_c${CHANNEL_TILE}__fma3_${ROW_TILE}x( size_t rows, size_t channels, const void* restrict input, size_t input_stride, const void* restrict weights, void* restrict output, size_t output_stride, const union xnn_f16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(rows != 0); assert(channels != 0); assert(channels % sizeof(uint16_t) == 0); const uint16_t* i0 = (const uint16_t*) input; uint16_t* o0 = (uint16_t*) output; $for M in range(1, ROW_TILE): const uint16_t* i${M} = (const uint16_t*) ((uintptr_t) i${M-1} + input_stride); uint16_t* o${M} = (uint16_t*) ((uintptr_t) o${M-1} + output_stride); const size_t input_increment = input_stride * ${ROW_TILE} - channels; const size_t output_increment = output_stride * ${ROW_TILE} - channels; const __m256 vmin = _mm256_load_ps(params->avx.min); const __m256 vmax = _mm256_load_ps(params->avx.max); do { $for M in range(1, ROW_TILE): $if M % 2 == 0: if XNN_UNPREDICTABLE(rows <= ${M}) { i${M} = i${M-1}; o${M} = o${M-1}; } $else: if XNN_UNPREDICTABLE(rows < ${M+1}) { i${M} = i${M-1}; o${M} = o${M-1}; } const uint16_t* w = (const uint16_t*) weights; size_t c = channels; $if CHANNEL_TILE > 8: for (; c >= ${CHANNEL_TILE} * sizeof(uint16_t); c -= ${CHANNEL_TILE} * sizeof(uint16_t)) { const __m256 vscale${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) w)); $for C in range(8, CHANNEL_TILE, 8): const __m256 vscale${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + ${C}))); $for M in range(ROW_TILE): __m256 vacc${M}x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M})); $for C in range(8, CHANNEL_TILE, 8): __m256 vacc${M}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${M} + ${C}))); i${M} += ${CHANNEL_TILE}; $for C in range(0, CHANNEL_TILE, 8): const __m256 vbias${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + ${CHANNEL_TILE + C}))); w += ${2 * CHANNEL_TILE}; $for M in range(ROW_TILE): $for C in range(0, CHANNEL_TILE, 8): vacc${M}x${ABC[C:C+8]} = _mm256_fmadd_ps(vacc${M}x${ABC[C:C+8]}, vscale${ABC[C:C+8]}, vbias${ABC[C:C+8]}); $for M in range(ROW_TILE): $for C in range(0, CHANNEL_TILE, 8): vacc${M}x${ABC[C:C+8]} = _mm256_max_ps(vacc${M}x${ABC[C:C+8]}, vmin); $for M in range(ROW_TILE): $for C in range(0, CHANNEL_TILE, 8): vacc${M}x${ABC[C:C+8]} = _mm256_min_ps(vacc${M}x${ABC[C:C+8]}, vmax); $for M in range(ROW_TILE): _mm_storeu_si128((__m128i*) o${M}, _mm256_cvtps_ph(vacc${M}x${ABC[0:8]}, _MM_FROUND_TO_NEAREST_INT)); $for C in range(8, CHANNEL_TILE, 8): _mm_storeu_si128((__m128i*) (o${M} + ${C}), _mm256_cvtps_ph(vacc${M}x${ABC[C:C+8]}, _MM_FROUND_TO_NEAREST_INT)); o${M} += ${CHANNEL_TILE}; } for (; c >= 8 * sizeof(uint16_t); c -= 8 * sizeof(uint16_t)) { const __m256 vscale = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) w)); $for M in range(ROW_TILE): __m256 vacc${M} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M})); i${M} += 8; const __m256 vbias = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + ${CHANNEL_TILE}))); w += ${8 if CHANNEL_TILE > 8 else CHANNEL_TILE * 2}; $for M in range(ROW_TILE): vacc${M} = _mm256_fmadd_ps(vacc${M}, vscale, vbias); $for M in range(ROW_TILE): vacc${M} = _mm256_max_ps(vacc${M}, vmin); $for M in range(ROW_TILE): vacc${M} = _mm256_min_ps(vacc${M}, vmax); $for M in range(ROW_TILE): _mm_storeu_si128((__m128i*) o${M}, _mm256_cvtps_ph(vacc${M}, _MM_FROUND_TO_NEAREST_INT)); o${M} += 8; } if XNN_UNLIKELY(c != 0) { const __m256 vscale = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) w)); $for M in range(ROW_TILE): __m256 vacc${M} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M})); i${M} = (const uint16_t*) ((uintptr_t) i${M} + c); const __m256 vbias = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (w + ${CHANNEL_TILE}))); $for M in range(ROW_TILE): vacc${M} = _mm256_fmadd_ps(vacc${M}, vscale, vbias); $for M in range(ROW_TILE): vacc${M} = _mm256_max_ps(vacc${M}, vmin); $for M in range(ROW_TILE): vacc${M} = _mm256_min_ps(vacc${M}, vmax); $for M in range(ROW_TILE): __m128i vh${M} = _mm256_cvtps_ph(vacc${M}, _MM_FROUND_TO_NEAREST_INT); if (c & (4 * sizeof(uint16_t))) { $for M in range(ROW_TILE): _mm_storel_epi64((__m128i*) o${M}, vh${M}); $for M in range(ROW_TILE): vh${M} = _mm_unpackhi_epi64(vh${M}, vh${M}); $for M in range(ROW_TILE): o${M} += 4; } if (c & (2 * sizeof(uint16_t))) { $for M in range(ROW_TILE): _mm_storeu_si32(o${M}, vh${M}); $for M in range(ROW_TILE): vh${M} = _mm_srli_epi64(vh${M}, 32); $for M in range(ROW_TILE): o${M} += 2; } if (c & (1 * sizeof(uint16_t))) { $for M in range(ROW_TILE): *o${M} = (uint16_t) _mm_extract_epi16(vh${M}, 0); $for M in range(ROW_TILE): o${M} += 1; } } $for M in range(ROW_TILE): i${M} = (const uint16_t*) ((uintptr_t) i${M} + input_increment); o${M} = (uint16_t*) ((uintptr_t) o${M} + output_increment); rows = doz(rows, ${ROW_TILE}); } while (rows != 0); }