// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert NR % 4 == 0 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include void xnn_bf16_gemm_minmax_ukernel_${MR}x${NR}c2__neonbf16_bfdot_lane_ld128( size_t mr, size_t nc, size_t kc, const void* restrict a, size_t a_stride, const void* restrict w_ptr, void* restrict c, size_t cm_stride, size_t cn_stride, const union xnn_bf16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(mr != 0); assert(mr <= ${MR}); assert(nc != 0); assert(kc != 0); assert(kc % sizeof(bfloat16_t) == 0); assert(a != NULL); assert(w_ptr != NULL); assert(c != NULL); const bfloat16_t* a0 = (const bfloat16_t*) a; bfloat16_t* c0 = (bfloat16_t*) c; $for M in range(1, MR): const bfloat16_t* a${M} = (const bfloat16_t*) ((uintptr_t) a${M-1} + a_stride); bfloat16_t* c${M} = (bfloat16_t*) ((uintptr_t) c${M-1} + cm_stride); $if M % 2 == 0: if XNN_UNPREDICTABLE(mr <= ${M}) { a${M} = a${M-1}; c${M} = c${M-1}; } $elif M + 1 == MR: if XNN_UNPREDICTABLE(mr != ${M+1}) { a${M} = a${M-1}; c${M} = c${M-1}; } $else: if XNN_UNPREDICTABLE(mr < ${M+1}) { a${M} = a${M-1}; c${M} = c${M-1}; } const bfloat16_t* w = (const bfloat16_t*) w_ptr; do { $for N in range(0, NR, 4): float32x4_t vacc0x${ABC[N:N+4]} = vcvt_f32_bf16(vld1_bf16(w)); w += 4; $for M in range(1, MR): $for N in range(0, NR, 4): float32x4_t vacc${M}x${ABC[N:N+4]} = vacc0x${ABC[N:N+4]}; size_t k = kc; for (; k >= 8 * sizeof(bfloat16_t); k -= 8 * sizeof(bfloat16_t)) { $for M in range(MR): const bfloat16x8_t va${M} = vld1q_bf16(a${M}); a${M} += 8; $for K in range(4): $for N in range(0, NR, 4): const bfloat16x8_t vb${ABC[N:N+4]}c${ABC[2*K:2*K+2]} = vld1q_bf16(w); w += 8; $for N in range(0, NR, 4): $for M in range(MR): vacc${M}x${ABC[N:N+4]} = vbfdotq_laneq_f32(vacc${M}x${ABC[N:N+4]}, vb${ABC[N:N+4]}c${ABC[2*K:2*K+2]}, va${M}, ${K}); } if XNN_UNLIKELY(k != 0) { $for M in range(MR): const bfloat16x8_t va${M} = vld1q_bf16(a${M}); a${M} = (const bfloat16_t*) ((uintptr_t) a${M} + k); $for N in range(0, NR, 4): const bfloat16x8_t vb${ABC[N:N+4]}c${ABC[0:2]} = vld1q_bf16(w); w += 8; $for M in range(MR): const uint32x4_t va${M}c${ABC[0:2]} = vdupq_lane_u32(vreinterpret_u32_bf16(vget_low_bf16(va${M})), 0); $for N in range(0, NR, 4): const uint32x4_t vm${ABC[N:N+4]}c${ABC[0:2]} = vreinterpretq_u32_u16(vceqq_u16(vreinterpretq_u16_bf16(vb${ABC[N:N+4]}c${ABC[0:2]}), vmovq_n_u16(0))); $for N in range(0, NR, 4): $for M in range(MR): const uint32x4_t va${M}x${ABC[N:N+4]}c${ABC[0:2]} = vbicq_u32(va${M}c${ABC[0:2]}, vm${ABC[N:N+4]}c${ABC[0:2]}); vacc${M}x${ABC[N:N+4]} = vbfdotq_f32(vacc${M}x${ABC[N:N+4]}, vb${ABC[N:N+4]}c${ABC[0:2]}, vreinterpretq_bf16_u32(va${M}x${ABC[N:N+4]}c${ABC[0:2]})); if (k > 2 * sizeof(bfloat16_t)) { $for N in range(0, NR, 4): const bfloat16x8_t vb${ABC[N:N+4]}c${ABC[2:4]} = vld1q_bf16(w); w += 8; $for M in range(MR): const uint32x4_t va${M}c${ABC[2:4]} = vdupq_lane_u32(vreinterpret_u32_bf16(vget_low_bf16(va${M})), 1); $for N in range(0, NR, 4): const uint32x4_t vm${ABC[N:N+4]}c${ABC[2:4]} = vreinterpretq_u32_u16(vceqq_u16(vreinterpretq_u16_bf16(vb${ABC[N:N+4]}c${ABC[2:4]}), vmovq_n_u16(0))); $for N in range(0, NR, 4): $for M in range(MR): const uint32x4_t va${M}x${ABC[N:N+4]}c${ABC[2:4]} = vbicq_u32(va${M}c${ABC[2:4]}, vm${ABC[N:N+4]}c${ABC[2:4]}); vacc${M}x${ABC[N:N+4]} = vbfdotq_f32(vacc${M}x${ABC[N:N+4]}, vb${ABC[N:N+4]}c${ABC[2:4]}, vreinterpretq_bf16_u32(va${M}x${ABC[N:N+4]}c${ABC[2:4]})); if (k > 4 * sizeof(bfloat16_t)) { $for N in range(0, NR, 4): const bfloat16x8_t vb${ABC[N:N+4]}c${ABC[4:6]} = vld1q_bf16(w); w += 8; $for M in range(MR): const uint32x4_t va${M}c${ABC[4:6]} = vdupq_lane_u32(vreinterpret_u32_bf16(vget_high_bf16(va${M})), 0); $for N in range(0, NR, 4): const uint32x4_t vm${ABC[N:N+4]}c${ABC[4:6]} = vreinterpretq_u32_u16(vceqq_u16(vreinterpretq_u16_bf16(vb${ABC[N:N+4]}c${ABC[4:6]}), vmovq_n_u16(0))); $for N in range(0, NR, 4): $for M in range(MR): const uint32x4_t va${M}x${ABC[N:N+4]}c${ABC[4:6]} = vbicq_u32(va${M}c${ABC[4:6]}, vm${ABC[N:N+4]}c${ABC[4:6]}); vacc${M}x${ABC[N:N+4]} = vbfdotq_f32(vacc${M}x${ABC[N:N+4]}, vb${ABC[N:N+4]}c${ABC[4:6]}, vreinterpretq_bf16_u32(va${M}x${ABC[N:N+4]}c${ABC[4:6]})); if (k > 6 * sizeof(bfloat16_t)) { $for N in range(0, NR, 4): const bfloat16x8_t vb${ABC[N:N+4]}c${ABC[6:8]} = vld1q_bf16(w); w += 8; $for M in range(MR): const uint32x4_t va${M}c${ABC[6:8]} = vdupq_lane_u32(vreinterpret_u32_bf16(vget_high_bf16(va${M})), 1); $for N in range(0, NR, 4): const uint32x4_t vm${ABC[N:N+4]}c${ABC[6:8]} = vreinterpretq_u32_u16(vceqq_u16(vreinterpretq_u16_bf16(vb${ABC[N:N+4]}c${ABC[6:8]}), vmovq_n_u16(0))); $for N in range(0, NR, 4): $for M in range(MR): const uint32x4_t va${M}x${ABC[N:N+4]}c${ABC[6:8]} = vbicq_u32(va${M}c${ABC[6:8]}, vm${ABC[N:N+4]}c${ABC[6:8]}); vacc${M}x${ABC[N:N+4]} = vbfdotq_f32(vacc${M}x${ABC[N:N+4]}, vb${ABC[N:N+4]}c${ABC[6:8]}, vreinterpretq_bf16_u32(va${M}x${ABC[N:N+4]}c${ABC[6:8]})); } } } } const float32x4_t vmax = vld1q_dup_f32(¶ms->scalar.max); $for N in range(0, NR, 4): $for M in range(MR): vacc${M}x${ABC[N:N+4]} = vminq_f32(vacc${M}x${ABC[N:N+4]}, vmax); const float32x4_t vmin = vld1q_dup_f32(¶ms->scalar.min); $for N in range(0, NR, 4): $for M in range(MR): vacc${M}x${ABC[N:N+4]} = vmaxq_f32(vacc${M}x${ABC[N:N+4]}, vmin); $for N in range(0, NR, 4): $for M in range(MR): bfloat16x4_t vout${M}x${ABC[N:N+4]} = vcvt_bf16_f32(vacc${M}x${ABC[N:N+4]}); if XNN_LIKELY(nc >= ${NR}) { $for M in range(MR): vst1_bf16(c${M}, vout${M}x${ABC[0:4]}); $for N in range(4, NR, 4): vst1_bf16(c${M} + ${N}, vout${M}x${ABC[N:N+4]}); c${M} = (bfloat16_t*) ((uintptr_t) c${M} + cn_stride); $for M in range(MR): a${M} = (const bfloat16_t*) ((uintptr_t) a${M} - kc); nc -= ${NR}; } else { $for LOG2N in reversed(range(NR.bit_length())): $if NR != 1 << LOG2N: if (nc & ${1 << LOG2N}) { $if LOG2N >= 2: $for N in range(0, 1 << LOG2N, 4): $for M in range(MR): vst1_bf16(c${M}, vout${M}x${ABC[N:N+4]}); c${M} += 4; $for M in range(MR): $for N in range(0, NR - (1 << LOG2N), 4): vout${M}x${ABC[N:N+4]} = vout${M}x${ABC[N + (1 << LOG2N):N + (1 << LOG2N)+4]}; $elif LOG2N == 1: $for M in range(MR): vst1_lane_u32((void*) c${M}, vreinterpret_u32_bf16(vout${M}x${ABC[0:4]}), 0); c${M} += 2; $for M in range(MR): vout${M}x${ABC[0:4]} = vreinterpret_bf16_u16(vext_u16(vreinterpret_u16_bf16(vout${M}x${ABC[0:4]}), vreinterpret_u16_bf16(vout${M}x${ABC[0:4]}), 2)); $elif LOG2N == 0: $for M in range(MR): vst1_lane_bf16(c${M}, vout${M}x${ABC[0:4]}, 0); } nc = 0; } } while (nc != 0); }