#pragma once #ifndef FXDIV_H #define FXDIV_H #if defined(__cplusplus) && (__cplusplus >= 201103L) #include #include #include #elif !defined(__OPENCL_VERSION__) #include #include #include #endif #if defined(_MSC_VER) #include #if defined(_M_IX86) || defined(_M_X64) #include #endif #endif #ifndef FXDIV_USE_INLINE_ASSEMBLY #define FXDIV_USE_INLINE_ASSEMBLY 0 #endif static inline uint64_t fxdiv_mulext_uint32_t(uint32_t a, uint32_t b) { #if defined(_MSC_VER) && defined(_M_IX86) return (uint64_t) __emulu((unsigned int) a, (unsigned int) b); #else return (uint64_t) a * (uint64_t) b; #endif } static inline uint32_t fxdiv_mulhi_uint32_t(uint32_t a, uint32_t b) { #if defined(__OPENCL_VERSION__) return mul_hi(a, b); #elif defined(__CUDA_ARCH__) return (uint32_t) __umulhi((unsigned int) a, (unsigned int) b); #elif defined(_MSC_VER) && defined(_M_IX86) return (uint32_t) (__emulu((unsigned int) a, (unsigned int) b) >> 32); #elif defined(_MSC_VER) && defined(_M_ARM) return (uint32_t) _MulUnsignedHigh((unsigned long) a, (unsigned long) b); #else return (uint32_t) (((uint64_t) a * (uint64_t) b) >> 32); #endif } static inline uint64_t fxdiv_mulhi_uint64_t(uint64_t a, uint64_t b) { #if defined(__OPENCL_VERSION__) return mul_hi(a, b); #elif defined(__CUDA_ARCH__) return (uint64_t) __umul64hi((unsigned long long) a, (unsigned long long) b); #elif defined(_MSC_VER) && defined(_M_X64) return (uint64_t) __umulh((unsigned __int64) a, (unsigned __int64) b); #elif defined(__GNUC__) && defined(__SIZEOF_INT128__) return (uint64_t) (((((unsigned __int128) a) * ((unsigned __int128) b))) >> 64); #else const uint32_t a_lo = (uint32_t) a; const uint32_t a_hi = (uint32_t) (a >> 32); const uint32_t b_lo = (uint32_t) b; const uint32_t b_hi = (uint32_t) (b >> 32); const uint64_t t = fxdiv_mulext_uint32_t(a_hi, b_lo) + (uint64_t) fxdiv_mulhi_uint32_t(a_lo, b_lo); return fxdiv_mulext_uint32_t(a_hi, b_hi) + (t >> 32) + ((fxdiv_mulext_uint32_t(a_lo, b_hi) + (uint64_t) (uint32_t) t) >> 32); #endif } static inline size_t fxdiv_mulhi_size_t(size_t a, size_t b) { #if SIZE_MAX == UINT32_MAX return (size_t) fxdiv_mulhi_uint32_t((uint32_t) a, (uint32_t) b); #elif SIZE_MAX == UINT64_MAX return (size_t) fxdiv_mulhi_uint64_t((uint64_t) a, (uint64_t) b); #else #error Unsupported platform #endif } struct fxdiv_divisor_uint32_t { uint32_t value; uint32_t m; uint8_t s1; uint8_t s2; }; struct fxdiv_result_uint32_t { uint32_t quotient; uint32_t remainder; }; struct fxdiv_divisor_uint64_t { uint64_t value; uint64_t m; uint8_t s1; uint8_t s2; }; struct fxdiv_result_uint64_t { uint64_t quotient; uint64_t remainder; }; struct fxdiv_divisor_size_t { size_t value; size_t m; uint8_t s1; uint8_t s2; }; struct fxdiv_result_size_t { size_t quotient; size_t remainder; }; static inline struct fxdiv_divisor_uint32_t fxdiv_init_uint32_t(uint32_t d) { struct fxdiv_divisor_uint32_t result = { d }; if (d == 1) { result.m = UINT32_C(1); result.s1 = 0; result.s2 = 0; } else { #if defined(__OPENCL_VERSION__) const uint32_t l_minus_1 = 31 - clz(d - 1); #elif defined(__CUDA_ARCH__) const uint32_t l_minus_1 = 31 - __clz((int) (d - 1)); #elif defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64) || defined(_M_ARM) || defined(_M_ARM64)) unsigned long l_minus_1; _BitScanReverse(&l_minus_1, (unsigned long) (d - 1)); #elif defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && FXDIV_USE_INLINE_ASSEMBLY uint32_t l_minus_1; __asm__("BSRL %[d_minus_1], %[l_minus_1]" : [l_minus_1] "=r" (l_minus_1) : [d_minus_1] "r" (d - 1) : "cc"); #elif defined(__GNUC__) const uint32_t l_minus_1 = 31 - __builtin_clz(d - 1); #else /* Based on Algorithm 2 from Hacker's delight */ uint32_t l_minus_1 = 0; uint32_t x = d - 1; uint32_t y = x >> 16; if (y != 0) { l_minus_1 += 16; x = y; } y = x >> 8; if (y != 0) { l_minus_1 += 8; x = y; } y = x >> 4; if (y != 0) { l_minus_1 += 4; x = y; } y = x >> 2; if (y != 0) { l_minus_1 += 2; x = y; } if ((x & 2) != 0) { l_minus_1 += 1; } #endif uint32_t u_hi = (UINT32_C(2) << (uint32_t) l_minus_1) - d; /* Division of 64-bit number u_hi:UINT32_C(0) by 32-bit number d, 32-bit quotient output q */ #if defined(__GNUC__) && defined(__i386__) && FXDIV_USE_INLINE_ASSEMBLY uint32_t q; __asm__("DIVL %[d]" : "=a" (q), "+d" (u_hi) : [d] "r" (d), "a" (0) : "cc"); #elif (defined(_MSC_VER) && _MSC_VER >= 1920) && !defined(__clang__) && !defined(__INTEL_COMPILER) && (defined(_M_IX86) || defined(_M_X64)) unsigned int remainder; const uint32_t q = (uint32_t) _udiv64((unsigned __int64) ((uint64_t) u_hi << 32), (unsigned int) d, &remainder); #else const uint32_t q = ((uint64_t) u_hi << 32) / d; #endif result.m = q + UINT32_C(1); result.s1 = 1; result.s2 = (uint8_t) l_minus_1; } return result; } static inline struct fxdiv_divisor_uint64_t fxdiv_init_uint64_t(uint64_t d) { struct fxdiv_divisor_uint64_t result = { d }; if (d == 1) { result.m = UINT64_C(1); result.s1 = 0; result.s2 = 0; } else { #if defined(__OPENCL_VERSION__) const uint32_t nlz_d = clz(d); const uint32_t l_minus_1 = 63 - clz(d - 1); #elif defined(__CUDA_ARCH__) const uint32_t nlz_d = __clzll((long long) d); const uint32_t l_minus_1 = 63 - __clzll((long long) (d - 1)); #elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_ARM64)) unsigned long l_minus_1; _BitScanReverse64(&l_minus_1, (unsigned __int64) (d - 1)); unsigned long bsr_d; _BitScanReverse64(&bsr_d, (unsigned __int64) d); const uint32_t nlz_d = bsr_d ^ 0x3F; #elif defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_ARM)) const uint64_t d_minus_1 = d - 1; const uint8_t d_is_power_of_2 = (d & d_minus_1) == 0; unsigned long l_minus_1; if ((uint32_t) (d_minus_1 >> 32) == 0) { _BitScanReverse(&l_minus_1, (unsigned long) d_minus_1); } else { _BitScanReverse(&l_minus_1, (unsigned long) (uint32_t) (d_minus_1 >> 32)); l_minus_1 += 32; } const uint32_t nlz_d = ((uint8_t) l_minus_1 ^ UINT8_C(0x3F)) - d_is_power_of_2; #elif defined(__GNUC__) && defined(__x86_64__) && FXDIV_USE_INLINE_ASSEMBLY uint64_t l_minus_1; __asm__("BSRQ %[d_minus_1], %[l_minus_1]" : [l_minus_1] "=r" (l_minus_1) : [d_minus_1] "r" (d - 1) : "cc"); #elif defined(__GNUC__) const uint32_t l_minus_1 = 63 - __builtin_clzll(d - 1); const uint32_t nlz_d = __builtin_clzll(d); #else /* Based on Algorithm 2 from Hacker's delight */ const uint64_t d_minus_1 = d - 1; const uint32_t d_is_power_of_2 = (d & d_minus_1) == 0; uint32_t l_minus_1 = 0; uint32_t x = (uint32_t) d_minus_1; uint32_t y = d_minus_1 >> 32; if (y != 0) { l_minus_1 += 32; x = y; } y = x >> 16; if (y != 0) { l_minus_1 += 16; x = y; } y = x >> 8; if (y != 0) { l_minus_1 += 8; x = y; } y = x >> 4; if (y != 0) { l_minus_1 += 4; x = y; } y = x >> 2; if (y != 0) { l_minus_1 += 2; x = y; } if ((x & 2) != 0) { l_minus_1 += 1; } const uint32_t nlz_d = (l_minus_1 ^ UINT32_C(0x3F)) - d_is_power_of_2; #endif uint64_t u_hi = (UINT64_C(2) << (uint32_t) l_minus_1) - d; /* Division of 128-bit number u_hi:UINT64_C(0) by 64-bit number d, 64-bit quotient output q */ #if defined(__GNUC__) && defined(__x86_64__) && FXDIV_USE_INLINE_ASSEMBLY uint64_t q; __asm__("DIVQ %[d]" : "=a" (q), "+d" (u_hi) : [d] "r" (d), "a" (UINT64_C(0)) : "cc"); #elif 0 && defined(__GNUC__) && defined(__SIZEOF_INT128__) /* GCC, Clang, and Intel Compiler fail to inline optimized implementation and call into support library for 128-bit division */ const uint64_t q = (uint64_t) (((unsigned __int128) u_hi << 64) / ((unsigned __int128) d)); #elif (defined(_MSC_VER) && _MSC_VER >= 1920) && !defined(__clang__) && !defined(__INTEL_COMPILER) && defined(_M_X64) unsigned __int64 remainder; const uint64_t q = (uint64_t) _udiv128((unsigned __int64) u_hi, 0, (unsigned __int64) d, &remainder); #else /* Implementation based on code from Hacker's delight */ /* Normalize divisor and shift divident left */ d <<= nlz_d; u_hi <<= nlz_d; /* Break divisor up into two 32-bit digits */ const uint64_t d_hi = (uint32_t) (d >> 32); const uint32_t d_lo = (uint32_t) d; /* Compute the first quotient digit, q1 */ uint64_t q1 = u_hi / d_hi; uint64_t r1 = u_hi - q1 * d_hi; while ((q1 >> 32) != 0 || fxdiv_mulext_uint32_t((uint32_t) q1, d_lo) > (r1 << 32)) { q1 -= 1; r1 += d_hi; if ((r1 >> 32) != 0) { break; } } /* Multiply and subtract. */ u_hi = (u_hi << 32) - q1 * d; /* Compute the second quotient digit, q0 */ uint64_t q0 = u_hi / d_hi; uint64_t r0 = u_hi - q0 * d_hi; while ((q0 >> 32) != 0 || fxdiv_mulext_uint32_t((uint32_t) q0, d_lo) > (r0 << 32)) { q0 -= 1; r0 += d_hi; if ((r0 >> 32) != 0) { break; } } const uint64_t q = (q1 << 32) | (uint32_t) q0; #endif result.m = q + UINT64_C(1); result.s1 = 1; result.s2 = (uint8_t) l_minus_1; } return result; } static inline struct fxdiv_divisor_size_t fxdiv_init_size_t(size_t d) { #if SIZE_MAX == UINT32_MAX const struct fxdiv_divisor_uint32_t uint_result = fxdiv_init_uint32_t((uint32_t) d); #elif SIZE_MAX == UINT64_MAX const struct fxdiv_divisor_uint64_t uint_result = fxdiv_init_uint64_t((uint64_t) d); #else #error Unsupported platform #endif struct fxdiv_divisor_size_t size_result = { (size_t) uint_result.value, (size_t) uint_result.m, uint_result.s1, uint_result.s2 }; return size_result; } static inline uint32_t fxdiv_quotient_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t divisor) { const uint32_t t = fxdiv_mulhi_uint32_t(n, divisor.m); return (t + ((n - t) >> divisor.s1)) >> divisor.s2; } static inline uint64_t fxdiv_quotient_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t divisor) { const uint64_t t = fxdiv_mulhi_uint64_t(n, divisor.m); return (t + ((n - t) >> divisor.s1)) >> divisor.s2; } static inline size_t fxdiv_quotient_size_t(size_t n, const struct fxdiv_divisor_size_t divisor) { #if SIZE_MAX == UINT32_MAX const struct fxdiv_divisor_uint32_t uint32_divisor = { (uint32_t) divisor.value, (uint32_t) divisor.m, divisor.s1, divisor.s2 }; return fxdiv_quotient_uint32_t((uint32_t) n, uint32_divisor); #elif SIZE_MAX == UINT64_MAX const struct fxdiv_divisor_uint64_t uint64_divisor = { (uint64_t) divisor.value, (uint64_t) divisor.m, divisor.s1, divisor.s2 }; return fxdiv_quotient_uint64_t((uint64_t) n, uint64_divisor); #else #error Unsupported platform #endif } static inline uint32_t fxdiv_remainder_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t divisor) { const uint32_t quotient = fxdiv_quotient_uint32_t(n, divisor); return n - quotient * divisor.value; } static inline uint64_t fxdiv_remainder_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t divisor) { const uint64_t quotient = fxdiv_quotient_uint64_t(n, divisor); return n - quotient * divisor.value; } static inline size_t fxdiv_remainder_size_t(size_t n, const struct fxdiv_divisor_size_t divisor) { const size_t quotient = fxdiv_quotient_size_t(n, divisor); return n - quotient * divisor.value; } static inline uint32_t fxdiv_round_down_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t granularity) { const uint32_t quotient = fxdiv_quotient_uint32_t(n, granularity); return quotient * granularity.value; } static inline uint64_t fxdiv_round_down_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t granularity) { const uint64_t quotient = fxdiv_quotient_uint64_t(n, granularity); return quotient * granularity.value; } static inline size_t fxdiv_round_down_size_t(size_t n, const struct fxdiv_divisor_size_t granularity) { const size_t quotient = fxdiv_quotient_size_t(n, granularity); return quotient * granularity.value; } static inline struct fxdiv_result_uint32_t fxdiv_divide_uint32_t(uint32_t n, const struct fxdiv_divisor_uint32_t divisor) { const uint32_t quotient = fxdiv_quotient_uint32_t(n, divisor); const uint32_t remainder = n - quotient * divisor.value; struct fxdiv_result_uint32_t result = { quotient, remainder }; return result; } static inline struct fxdiv_result_uint64_t fxdiv_divide_uint64_t(uint64_t n, const struct fxdiv_divisor_uint64_t divisor) { const uint64_t quotient = fxdiv_quotient_uint64_t(n, divisor); const uint64_t remainder = n - quotient * divisor.value; struct fxdiv_result_uint64_t result = { quotient, remainder }; return result; } static inline struct fxdiv_result_size_t fxdiv_divide_size_t(size_t n, const struct fxdiv_divisor_size_t divisor) { const size_t quotient = fxdiv_quotient_size_t(n, divisor); const size_t remainder = n - quotient * divisor.value; struct fxdiv_result_size_t result = { quotient, remainder }; return result; } #endif /* FXDIV_H */