// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert CHANNEL_TILE % 4 == 0 $assert KERNEL_TILE >= 2 $assert ACCUMULATORS >= 1 $assert ACTIVATION != "MINMAX" or ARCH in ["ARM", "X86", "RELAXED"] $assert not FMA or ARCH == "RELAXED" $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include $assert ACTIVATION in ["LINEAR", "RELU", "MINMAX"] $if ACTIVATION == "MINMAX": $ WASM_F32X4_MIN={"ARM": "wasm_f32x4_min", "X86": "wasm_f32x4_pmin", "RELAXED": "wasm_f32x4_relaxed_min"}[ARCH] $ WASM_F32X4_MAX={"ARM": "wasm_f32x4_max", "X86": "wasm_f32x4_pmax", "RELAXED": "wasm_f32x4_relaxed_max"}[ARCH] $ACTIVATION_SUFFIX = {"LINEAR": ""}.get(ACTIVATION, "_" + ACTIVATION.lower()) $ISA = "wasmsimd" if not FMA and (ACTIVATION in ["LINEAR", "RELU"] or ARCH != "RELAXED") else "wasmrelaxedsimd" $ARCH_SUFFIX = "" if not FMA and (ACTIVATION in ["LINEAR", "RELU"] or ARCH == "RELAXED") else "_" + ("fma" if FMA else ARCH.lower()) $PARAMS = {"LINEAR": "xnn_f32_default_params", "RELU": "xnn_f32_relu_params", "MINMAX": "xnn_f32_minmax_params"}[ACTIVATION] void xnn_f32_dwconv${ACTIVATION_SUFFIX}_ukernel_${KERNEL_TILE}p${CHANNEL_TILE}c__${ISA}${ARCH_SUFFIX}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( size_t channels, size_t output_width, const float** input, const float* weights, float* output, intptr_t input_stride, size_t output_increment, size_t input_offset, const float* zero, const union ${PARAMS} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(channels != 0); assert(output_width != 0); $if ACTIVATION == "MINMAX": const v128_t vmin = wasm_v128_load64_splat(params->wasmsimd.min); const v128_t vmax = wasm_v128_load64_splat(params->wasmsimd.max); $elif ACTIVATION == "RELU": const v128_t vzero = wasm_i32x4_const_splat(0); do { $for K in range(KERNEL_TILE): const float* i${K} = input[${K}]; assert(i${K} != NULL); if XNN_UNPREDICTABLE(i${K} != zero) { i${K} = (const float*) ((uintptr_t) i${K} + input_offset); } input = (const float**) ((uintptr_t) input + input_stride); size_t c = channels; const float* w = weights; for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { v128_t vacc${ABC[0:4]}p0 = wasm_v128_load(w); $for C in range(4, CHANNEL_TILE, 4): v128_t vacc${ABC[C:C+4]}p0 = wasm_v128_load(w + ${C}); $for K in range(KERNEL_TILE): const v128_t vi${K}x${ABC[0:4]} = wasm_v128_load(i${K}); $for C in range(4, CHANNEL_TILE, 4): const v128_t vi${K}x${ABC[C:C+4]} = wasm_v128_load(i${K} + ${C}); i${K} += ${CHANNEL_TILE}; $for C in range(0, CHANNEL_TILE, 4): const v128_t vk${K}x${ABC[C:C+4]} = wasm_v128_load(w + ${(K + 1) * CHANNEL_TILE + C}); $for C in range(0, CHANNEL_TILE, 4): $if 1 <= K < ACCUMULATORS: v128_t vacc${ABC[C:C+4]}p${K} = wasm_f32x4_mul(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}); $else: $if FMA: vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}, vacc${ABC[C:C+4]}p${K % ACCUMULATORS}); $else: vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}), vacc${ABC[C:C+4]}p${K % ACCUMULATORS}); w += ${(KERNEL_TILE + 1) * CHANNEL_TILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: $for C in range(0, CHANNEL_TILE, 4): vacc${ABC[C:C+4]}p${A} = wasm_f32x4_add(vacc${ABC[C:C+4]}p${A}, vacc${ABC[C:C+4]}p${A + ACC_SLICE}); $ACC_SLICE *= 2 $if ACTIVATION == "MINMAX": $for C in range(0, CHANNEL_TILE, 4): v128_t vacc${ABC[C:C+4]} = ${WASM_F32X4_MAX}(vmin, vacc${ABC[C:C+4]}p0); $for C in range(0, CHANNEL_TILE, 4): vacc${ABC[C:C+4]} = ${WASM_F32X4_MIN}(vmax, vacc${ABC[C:C+4]}); $elif ACTIVATION == "RELU": $for C in range(0, CHANNEL_TILE, 4): const v128_t vacc${ABC[C:C+4]} = wasm_i32x4_max(vacc${ABC[C:C+4]}p0, vzero); $elif ACTIVATION == "LINEAR": $for C in range(0, CHANNEL_TILE, 4): const v128_t vacc${ABC[C:C+4]} = vacc${ABC[C:C+4]}p0; wasm_v128_store(output, vacc${ABC[0:4]}); $for C in range(4, CHANNEL_TILE, 4): wasm_v128_store(output + ${C}, vacc${ABC[C:C+4]}); output += ${CHANNEL_TILE}; } $if CHANNEL_TILE > 4: for (; c >= 4; c -= 4) { v128_t vacc0123p0 = wasm_v128_load(w); $for K in range(KERNEL_TILE): const v128_t vi${K}x0123 = wasm_v128_load(i${K}); i${K} += 4; const v128_t vk${K}x0123 = wasm_v128_load(w + ${(K + 1) * CHANNEL_TILE}); $if 1 <= K < ACCUMULATORS: v128_t vacc0123p${K} = wasm_f32x4_mul(vi${K}x0123, vk${K}x0123); $else: $if FMA: vacc0123p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x0123, vk${K}x0123, vacc0123p${K % ACCUMULATORS}); $else: vacc0123p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x0123, vk${K}x0123), vacc0123p${K % ACCUMULATORS}); w += 4; $if ACCUMULATORS > 1: // Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc0123p${A} = wasm_f32x4_add(vacc0123p${A}, vacc0123p${A + ACC_SLICE}); $ACC_SLICE *= 2 $if ACTIVATION == "MINMAX": v128_t vacc0123 = ${WASM_F32X4_MAX}(vmin, vacc0123p0); vacc0123 = ${WASM_F32X4_MIN}(vmax, vacc0123); $elif ACTIVATION == "RELU": const v128_t vacc0123 = wasm_i32x4_max(vacc0123p0, vzero); $elif ACTIVATION == "LINEAR": const v128_t vacc0123 = vacc0123p0; wasm_v128_store(output, vacc0123); output += 4; } if XNN_UNLIKELY(c != 0) { v128_t vacc0123p0 = wasm_v128_load(w); $for K in range(KERNEL_TILE): const v128_t vi${K}x0123 = wasm_v128_load(i${K}); const v128_t vk${K}x0123 = wasm_v128_load(w + ${(K+1) * CHANNEL_TILE}); $if 1 <= K < ACCUMULATORS: v128_t vacc0123p${K} = wasm_f32x4_mul(vi${K}x0123, vk${K}x0123); $else: $if FMA: vacc0123p${K % ACCUMULATORS} = wasm_f32x4_relaxed_madd(vi${K}x0123, vk${K}x0123, vacc0123p${K % ACCUMULATORS}); $else: vacc0123p${K % ACCUMULATORS} = wasm_f32x4_add(wasm_f32x4_mul(vi${K}x0123, vk${K}x0123), vacc0123p${K % ACCUMULATORS}); $if ACCUMULATORS > 1: // Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc0123p${A} = wasm_f32x4_add(vacc0123p${A}, vacc0123p${A + ACC_SLICE}); $ACC_SLICE *= 2 $if ACTIVATION == "MINMAX": v128_t vacc0123 = ${WASM_F32X4_MAX}(vmin, vacc0123p0); vacc0123 = ${WASM_F32X4_MIN}(vmax, vacc0123); $elif ACTIVATION == "RELU": v128_t vacc0123 = wasm_i32x4_max(vacc0123p0, vzero); $elif ACTIVATION == "LINEAR": v128_t vacc0123 = vacc0123p0; if (c & 2) { wasm_v128_store64_lane(output, vacc0123, 0); vacc0123 = wasm_v64x2_shuffle(vacc0123, vacc0123, 1, 1); output += 2; } if (c & 1) { wasm_v128_store32_lane(output, vacc0123, 0); output += 1; } } output = (float*) ((uintptr_t) output + output_increment); } while (--output_width != 0); }