#include #include #include #include #include #if !defined(__ANDROID__) /* * sched.h is only used for CPU_SETSIZE constant. * Android NDK headers before platform 21 do have this constant in sched.h */ #include #endif #include #include #define STRINGIFY(token) #token #define KERNEL_MAX_FILENAME "/sys/devices/system/cpu/kernel_max" #define KERNEL_MAX_FILESIZE 32 #define FREQUENCY_FILENAME_SIZE (sizeof("/sys/devices/system/cpu/cpu" STRINGIFY(UINT32_MAX) "/cpufreq/cpuinfo_max_freq")) #define MAX_FREQUENCY_FILENAME_FORMAT "/sys/devices/system/cpu/cpu%" PRIu32 "/cpufreq/cpuinfo_max_freq" #define MIN_FREQUENCY_FILENAME_FORMAT "/sys/devices/system/cpu/cpu%" PRIu32 "/cpufreq/cpuinfo_min_freq" #define FREQUENCY_FILESIZE 32 #define PACKAGE_ID_FILENAME_SIZE (sizeof("/sys/devices/system/cpu/cpu" STRINGIFY(UINT32_MAX) "/topology/physical_package_id")) #define PACKAGE_ID_FILENAME_FORMAT "/sys/devices/system/cpu/cpu%" PRIu32 "/topology/physical_package_id" #define PACKAGE_ID_FILESIZE 32 #define CORE_ID_FILENAME_SIZE (sizeof("/sys/devices/system/cpu/cpu" STRINGIFY(UINT32_MAX) "/topology/core_id")) #define CORE_ID_FILENAME_FORMAT "/sys/devices/system/cpu/cpu%" PRIu32 "/topology/core_id" #define CORE_ID_FILESIZE 32 #define CORE_SIBLINGS_FILENAME_SIZE (sizeof("/sys/devices/system/cpu/cpu" STRINGIFY(UINT32_MAX) "/topology/core_siblings_list")) #define CORE_SIBLINGS_FILENAME_FORMAT "/sys/devices/system/cpu/cpu%" PRIu32 "/topology/core_siblings_list" #define THREAD_SIBLINGS_FILENAME_SIZE (sizeof("/sys/devices/system/cpu/cpu" STRINGIFY(UINT32_MAX) "/topology/thread_siblings_list")) #define THREAD_SIBLINGS_FILENAME_FORMAT "/sys/devices/system/cpu/cpu%" PRIu32 "/topology/thread_siblings_list" #define POSSIBLE_CPULIST_FILENAME "/sys/devices/system/cpu/possible" #define PRESENT_CPULIST_FILENAME "/sys/devices/system/cpu/present" inline static const char* parse_number(const char* start, const char* end, uint32_t number_ptr[restrict static 1]) { uint32_t number = 0; const char* parsed = start; for (; parsed != end; parsed++) { const uint32_t digit = (uint32_t) (uint8_t) (*parsed) - (uint32_t) '0'; if (digit >= 10) { break; } number = number * UINT32_C(10) + digit; } *number_ptr = number; return parsed; } /* Locale-independent */ inline static bool is_whitespace(char c) { switch (c) { case ' ': case '\t': case '\n': case '\r': return true; default: return false; } } #if defined(__ANDROID__) && !defined(CPU_SETSIZE) /* * Android NDK headers before platform 21 do not define CPU_SETSIZE, * so we hard-code its value, as defined in platform 21 headers */ #if defined(__LP64__) static const uint32_t default_max_processors_count = 1024; #else static const uint32_t default_max_processors_count = 32; #endif #else static const uint32_t default_max_processors_count = CPU_SETSIZE; #endif static bool uint32_parser(const char* text_start, const char* text_end, void* context) { if (text_start == text_end) { cpuinfo_log_error("failed to parse file %s: file is empty", KERNEL_MAX_FILENAME); return false; } uint32_t kernel_max = 0; const char* parsed_end = parse_number(text_start, text_end, &kernel_max); if (parsed_end == text_start) { cpuinfo_log_error("failed to parse file %s: \"%.*s\" is not an unsigned number", KERNEL_MAX_FILENAME, (int) (text_end - text_start), text_start); return false; } else { for (const char* char_ptr = parsed_end; char_ptr != text_end; char_ptr++) { if (!is_whitespace(*char_ptr)) { cpuinfo_log_warning("non-whitespace characters \"%.*s\" following number in file %s are ignored", (int) (text_end - char_ptr), char_ptr, KERNEL_MAX_FILENAME); break; } } } uint32_t* kernel_max_ptr = (uint32_t*) context; *kernel_max_ptr = kernel_max; return true; } uint32_t cpuinfo_linux_get_max_processors_count(void) { uint32_t kernel_max; if (cpuinfo_linux_parse_small_file(KERNEL_MAX_FILENAME, KERNEL_MAX_FILESIZE, uint32_parser, &kernel_max)) { cpuinfo_log_debug("parsed kernel_max value of %"PRIu32" from %s", kernel_max, KERNEL_MAX_FILENAME); if (kernel_max >= default_max_processors_count) { cpuinfo_log_warning("kernel_max value of %"PRIu32" parsed from %s exceeds platform-default limit %"PRIu32, kernel_max, KERNEL_MAX_FILENAME, default_max_processors_count - 1); } return kernel_max + 1; } else { cpuinfo_log_warning("using platform-default max processors count = %"PRIu32, default_max_processors_count); return default_max_processors_count; } } uint32_t cpuinfo_linux_get_processor_max_frequency(uint32_t processor) { char max_frequency_filename[FREQUENCY_FILENAME_SIZE]; const int chars_formatted = snprintf( max_frequency_filename, FREQUENCY_FILENAME_SIZE, MAX_FREQUENCY_FILENAME_FORMAT, processor); if ((unsigned int) chars_formatted >= FREQUENCY_FILENAME_SIZE) { cpuinfo_log_warning("failed to format filename for max frequency of processor %"PRIu32, processor); return 0; } uint32_t max_frequency; if (cpuinfo_linux_parse_small_file(max_frequency_filename, FREQUENCY_FILESIZE, uint32_parser, &max_frequency)) { cpuinfo_log_debug("parsed max frequency value of %"PRIu32" KHz for logical processor %"PRIu32" from %s", max_frequency, processor, max_frequency_filename); return max_frequency; } else { cpuinfo_log_warning("failed to parse max frequency for processor %"PRIu32" from %s", processor, max_frequency_filename); return 0; } } uint32_t cpuinfo_linux_get_processor_min_frequency(uint32_t processor) { char min_frequency_filename[FREQUENCY_FILENAME_SIZE]; const int chars_formatted = snprintf( min_frequency_filename, FREQUENCY_FILENAME_SIZE, MIN_FREQUENCY_FILENAME_FORMAT, processor); if ((unsigned int) chars_formatted >= FREQUENCY_FILENAME_SIZE) { cpuinfo_log_warning("failed to format filename for min frequency of processor %"PRIu32, processor); return 0; } uint32_t min_frequency; if (cpuinfo_linux_parse_small_file(min_frequency_filename, FREQUENCY_FILESIZE, uint32_parser, &min_frequency)) { cpuinfo_log_debug("parsed min frequency value of %"PRIu32" KHz for logical processor %"PRIu32" from %s", min_frequency, processor, min_frequency_filename); return min_frequency; } else { /* * This error is less severe than parsing max frequency, because min frequency is only useful for clustering, * while max frequency is also needed for peak FLOPS calculation. */ cpuinfo_log_info("failed to parse min frequency for processor %"PRIu32" from %s", processor, min_frequency_filename); return 0; } } bool cpuinfo_linux_get_processor_core_id(uint32_t processor, uint32_t core_id_ptr[restrict static 1]) { char core_id_filename[PACKAGE_ID_FILENAME_SIZE]; const int chars_formatted = snprintf( core_id_filename, CORE_ID_FILENAME_SIZE, CORE_ID_FILENAME_FORMAT, processor); if ((unsigned int) chars_formatted >= CORE_ID_FILENAME_SIZE) { cpuinfo_log_warning("failed to format filename for core id of processor %"PRIu32, processor); return 0; } uint32_t core_id; if (cpuinfo_linux_parse_small_file(core_id_filename, CORE_ID_FILESIZE, uint32_parser, &core_id)) { cpuinfo_log_debug("parsed core id value of %"PRIu32" for logical processor %"PRIu32" from %s", core_id, processor, core_id_filename); *core_id_ptr = core_id; return true; } else { cpuinfo_log_info("failed to parse core id for processor %"PRIu32" from %s", processor, core_id_filename); return false; } } bool cpuinfo_linux_get_processor_package_id(uint32_t processor, uint32_t package_id_ptr[restrict static 1]) { char package_id_filename[PACKAGE_ID_FILENAME_SIZE]; const int chars_formatted = snprintf( package_id_filename, PACKAGE_ID_FILENAME_SIZE, PACKAGE_ID_FILENAME_FORMAT, processor); if ((unsigned int) chars_formatted >= PACKAGE_ID_FILENAME_SIZE) { cpuinfo_log_warning("failed to format filename for package id of processor %"PRIu32, processor); return 0; } uint32_t package_id; if (cpuinfo_linux_parse_small_file(package_id_filename, PACKAGE_ID_FILESIZE, uint32_parser, &package_id)) { cpuinfo_log_debug("parsed package id value of %"PRIu32" for logical processor %"PRIu32" from %s", package_id, processor, package_id_filename); *package_id_ptr = package_id; return true; } else { cpuinfo_log_info("failed to parse package id for processor %"PRIu32" from %s", processor, package_id_filename); return false; } } static bool max_processor_number_parser(uint32_t processor_list_start, uint32_t processor_list_end, void* context) { uint32_t* processor_number_ptr = (uint32_t*) context; const uint32_t processor_list_last = processor_list_end - 1; if (*processor_number_ptr < processor_list_last) { *processor_number_ptr = processor_list_last; } return true; } uint32_t cpuinfo_linux_get_max_possible_processor(uint32_t max_processors_count) { uint32_t max_possible_processor = 0; if (!cpuinfo_linux_parse_cpulist(POSSIBLE_CPULIST_FILENAME, max_processor_number_parser, &max_possible_processor)) { #if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64 cpuinfo_log_error("failed to parse the list of possible processors in %s", POSSIBLE_CPULIST_FILENAME); #else cpuinfo_log_warning("failed to parse the list of possible processors in %s", POSSIBLE_CPULIST_FILENAME); #endif return UINT32_MAX; } if (max_possible_processor >= max_processors_count) { cpuinfo_log_warning( "maximum possible processor number %"PRIu32" exceeds system limit %"PRIu32": truncating to the latter", max_possible_processor, max_processors_count - 1); max_possible_processor = max_processors_count - 1; } return max_possible_processor; } uint32_t cpuinfo_linux_get_max_present_processor(uint32_t max_processors_count) { uint32_t max_present_processor = 0; if (!cpuinfo_linux_parse_cpulist(PRESENT_CPULIST_FILENAME, max_processor_number_parser, &max_present_processor)) { #if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64 cpuinfo_log_error("failed to parse the list of present processors in %s", PRESENT_CPULIST_FILENAME); #else cpuinfo_log_warning("failed to parse the list of present processors in %s", PRESENT_CPULIST_FILENAME); #endif return UINT32_MAX; } if (max_present_processor >= max_processors_count) { cpuinfo_log_warning( "maximum present processor number %"PRIu32" exceeds system limit %"PRIu32": truncating to the latter", max_present_processor, max_processors_count - 1); max_present_processor = max_processors_count - 1; } return max_present_processor; } struct detect_processors_context { uint32_t max_processors_count; uint32_t* processor0_flags; uint32_t processor_struct_size; uint32_t detected_flag; }; static bool detect_processor_parser(uint32_t processor_list_start, uint32_t processor_list_end, void* context) { const uint32_t max_processors_count = ((struct detect_processors_context*) context)->max_processors_count; const uint32_t* processor0_flags = ((struct detect_processors_context*) context)->processor0_flags; const uint32_t processor_struct_size = ((struct detect_processors_context*) context)->processor_struct_size; const uint32_t detected_flag = ((struct detect_processors_context*) context)->detected_flag; for (uint32_t processor = processor_list_start; processor < processor_list_end; processor++) { if (processor >= max_processors_count) { break; } *((uint32_t*) ((uintptr_t) processor0_flags + processor_struct_size * processor)) |= detected_flag; } return true; } bool cpuinfo_linux_detect_possible_processors(uint32_t max_processors_count, uint32_t* processor0_flags, uint32_t processor_struct_size, uint32_t possible_flag) { struct detect_processors_context context = { .max_processors_count = max_processors_count, .processor0_flags = processor0_flags, .processor_struct_size = processor_struct_size, .detected_flag = possible_flag, }; if (cpuinfo_linux_parse_cpulist(POSSIBLE_CPULIST_FILENAME, detect_processor_parser, &context)) { return true; } else { cpuinfo_log_warning("failed to parse the list of possible processors in %s", POSSIBLE_CPULIST_FILENAME); return false; } } bool cpuinfo_linux_detect_present_processors(uint32_t max_processors_count, uint32_t* processor0_flags, uint32_t processor_struct_size, uint32_t present_flag) { struct detect_processors_context context = { .max_processors_count = max_processors_count, .processor0_flags = processor0_flags, .processor_struct_size = processor_struct_size, .detected_flag = present_flag, }; if (cpuinfo_linux_parse_cpulist(PRESENT_CPULIST_FILENAME, detect_processor_parser, &context)) { return true; } else { cpuinfo_log_warning("failed to parse the list of present processors in %s", PRESENT_CPULIST_FILENAME); return false; } } struct siblings_context { const char* group_name; uint32_t max_processors_count; uint32_t processor; cpuinfo_siblings_callback callback; void* callback_context; }; static bool siblings_parser(uint32_t sibling_list_start, uint32_t sibling_list_end, struct siblings_context* context) { const char* group_name = context->group_name; const uint32_t max_processors_count = context->max_processors_count; const uint32_t processor = context->processor; if (sibling_list_end > max_processors_count) { cpuinfo_log_warning("ignore %s siblings %"PRIu32"-%"PRIu32" of processor %"PRIu32, group_name, max_processors_count, sibling_list_end - 1, processor); sibling_list_end = max_processors_count; } return context->callback(processor, sibling_list_start, sibling_list_end, context->callback_context); } bool cpuinfo_linux_detect_core_siblings( uint32_t max_processors_count, uint32_t processor, cpuinfo_siblings_callback callback, void* context) { char core_siblings_filename[CORE_SIBLINGS_FILENAME_SIZE]; const int chars_formatted = snprintf( core_siblings_filename, CORE_SIBLINGS_FILENAME_SIZE, CORE_SIBLINGS_FILENAME_FORMAT, processor); if ((unsigned int) chars_formatted >= CORE_SIBLINGS_FILENAME_SIZE) { cpuinfo_log_warning("failed to format filename for core siblings of processor %"PRIu32, processor); return false; } struct siblings_context siblings_context = { .group_name = "package", .max_processors_count = max_processors_count, .processor = processor, .callback = callback, .callback_context = context, }; if (cpuinfo_linux_parse_cpulist(core_siblings_filename, (cpuinfo_cpulist_callback) siblings_parser, &siblings_context)) { return true; } else { cpuinfo_log_info("failed to parse the list of core siblings for processor %"PRIu32" from %s", processor, core_siblings_filename); return false; } } bool cpuinfo_linux_detect_thread_siblings( uint32_t max_processors_count, uint32_t processor, cpuinfo_siblings_callback callback, void* context) { char thread_siblings_filename[THREAD_SIBLINGS_FILENAME_SIZE]; const int chars_formatted = snprintf( thread_siblings_filename, THREAD_SIBLINGS_FILENAME_SIZE, THREAD_SIBLINGS_FILENAME_FORMAT, processor); if ((unsigned int) chars_formatted >= THREAD_SIBLINGS_FILENAME_SIZE) { cpuinfo_log_warning("failed to format filename for thread siblings of processor %"PRIu32, processor); return false; } struct siblings_context siblings_context = { .group_name = "core", .max_processors_count = max_processors_count, .processor = processor, .callback = callback, .callback_context = context, }; if (cpuinfo_linux_parse_cpulist(thread_siblings_filename, (cpuinfo_cpulist_callback) siblings_parser, &siblings_context)) { return true; } else { cpuinfo_log_info("failed to parse the list of thread siblings for processor %"PRIu32" from %s", processor, thread_siblings_filename); return false; } }