// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert CHANNEL_TILE % 8 == 0 $assert CHANNEL_TILE >= 8 $assert ROW_TILE >= 3 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include #include void xnn_f16_gavgpool_minmax_ukernel_${ROW_TILE}x__f16c_c${CHANNEL_TILE}( size_t rows, size_t channels, const void* input, size_t input_stride, const void* zero, void* output, const union xnn_f16_scaleminmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(rows != 0); assert(rows <= ${ROW_TILE}); assert(channels != 0); const uint16_t* i0 = input; $for M in range(1, ROW_TILE): const uint16_t* i${M} = (const uint16_t*) ((uintptr_t) i${M-1} + input_stride); $if M % 2 == 1: if XNN_UNPREDICTABLE(rows < ${M+1}) { i${M} = (const uint16_t*) zero; } $else: if XNN_UNPREDICTABLE(rows <= ${M}) { i${M} = (const uint16_t*) zero; } uint16_t* o = (uint16_t*) output; const __m256 vscale = _mm256_load_ps(params->avx.scale); const __m256 vmin = _mm256_load_ps(params->avx.min); const __m256 vmax = _mm256_load_ps(params->avx.max); for (; channels >= ${CHANNEL_TILE}; channels -= ${CHANNEL_TILE}) { $for M in range(2): const __m256 vi${M}x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M})); $for C in range(8, CHANNEL_TILE, 8): const __m256 vi${M}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${M} + ${C}))); i${M} += ${CHANNEL_TILE}; $for C in range(0, CHANNEL_TILE, 8): $if C == 0: const __m256 vi2x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i2)); $else: const __m256 vi2x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i2 + ${C}))); __m128i vacc${ABC[C:C+8]} = _mm256_cvtps_ph(_mm256_add_ps(vi0x${ABC[C:C+8]}, vi1x${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT); i2 += ${CHANNEL_TILE}; $for M in range(2, ROW_TILE): $for C in range(0, CHANNEL_TILE, 8): $if M + 1 != ROW_TILE: $if C == 0: const __m256 vi${M+1}x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M+1})); $else: const __m256 vi${M+1}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${M+1} + ${C}))); $if C + 8 == CHANNEL_TILE: i${M+1} += ${CHANNEL_TILE}; vacc${ABC[C:C+8]} = _mm256_cvtps_ph(_mm256_add_ps(_mm256_cvtph_ps(vacc${ABC[C:C+8]}), vi${M}x${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT); $for C in range(0, CHANNEL_TILE, 8): vacc${ABC[C:C+8]} = _mm256_cvtps_ph(_mm256_mul_ps(_mm256_cvtph_ps(vacc${ABC[C:C+8]}), vscale), _MM_FROUND_TO_NEAREST_INT); $for C in range(0, CHANNEL_TILE, 8): __m256 vout${ABC[C:C+8]} = _mm256_max_ps(_mm256_cvtph_ps(vacc${ABC[C:C+8]}), vmin); $for C in range(0, CHANNEL_TILE, 8): vout${ABC[C:C+8]} = _mm256_min_ps(vout${ABC[C:C+8]}, vmax); _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vout${ABC[0:8]}, _MM_FROUND_TO_NEAREST_INT)); $for C in range(8, CHANNEL_TILE, 8): _mm_storeu_si128((__m128i*) (o + ${C}), _mm256_cvtps_ph(vout${ABC[C:C+8]}, _MM_FROUND_TO_NEAREST_INT)); o += ${CHANNEL_TILE}; } if XNN_UNLIKELY(channels != 0) { ${"do " if CHANNEL_TILE > 8 else ""}{ $for M in range(2): const __m256 vi${M}x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M})); $if CHANNEL_TILE > 8: i${M} += 8; const __m256 vi2x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i2)); __m128i vacc${ABC[0:8]} = _mm256_cvtps_ph(_mm256_add_ps(vi0x${ABC[0:8]}, vi1x${ABC[0:8]}), _MM_FROUND_TO_NEAREST_INT); $if CHANNEL_TILE > 8: i2 += 8; $for M in range(2, ROW_TILE): $if M + 1 != ROW_TILE: const __m256 vi${M+1}x${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${M+1})); $if CHANNEL_TILE > 8: i${M+1} += 8; vacc${ABC[0:8]} = _mm256_cvtps_ph(_mm256_add_ps(_mm256_cvtph_ps(vacc${ABC[0:8]}), vi${M}x${ABC[0:8]}), _MM_FROUND_TO_NEAREST_INT); vacc${ABC[0:8]} = _mm256_cvtps_ph(_mm256_mul_ps(_mm256_cvtph_ps(vacc${ABC[0:8]}), vscale), _MM_FROUND_TO_NEAREST_INT); __m256 vout${ABC[0:8]} = _mm256_max_ps(_mm256_cvtph_ps(vacc${ABC[0:8]}), vmin); vout${ABC[0:8]} = _mm256_min_ps(vout${ABC[0:8]}, vmax); $if CHANNEL_TILE > 8: if XNN_LIKELY(channels >= 8) { _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vout${ABC[0:8]}, _MM_FROUND_TO_NEAREST_INT)); o += 8; channels -= 8; } else { __m128i vh${ABC[0:8]} = _mm256_cvtps_ph(vout${ABC[0:8]}, _MM_FROUND_TO_NEAREST_INT); if (channels & 4) { _mm_storel_epi64((__m128i*) o, vh${ABC[0:8]}); o += 4; vh${ABC[0:8]} = _mm_unpackhi_epi64(vh${ABC[0:8]}, vh${ABC[0:8]}); } if (channels & 2) { _mm_storeu_si32(o, vh${ABC[0:8]}); o += 2; vh${ABC[0:8]} = _mm_srli_epi64(vh${ABC[0:8]}, 32); } if (channels & 1) { *o = (uint16_t) _mm_extract_epi16(vh${ABC[0:8]}, 0); } channels = 0; } $else: __m128i vh${ABC[0:8]} = _mm256_cvtps_ph(vout${ABC[0:8]}, _MM_FROUND_TO_NEAREST_INT); if (channels & 4) { _mm_storel_epi64((__m128i*) o, vh${ABC[0:8]}); o += 4; vh${ABC[0:8]} = _mm_unpackhi_epi64(vh${ABC[0:8]}, vh${ABC[0:8]}); } if (channels & 2) { _mm_storeu_si32(o, vh${ABC[0:8]}); o += 2; vh${ABC[0:8]} = _mm_srli_epi64(vh${ABC[0:8]}, 32); } if (channels & 1) { *o = (uint16_t) _mm_extract_epi16(vh${ABC[0:8]}, 0); } }${" while (channels != 0);" if CHANNEL_TILE > 8 else ""} } }