// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert DATATYPE in ["F32", "QC8"] $assert NR == 2 $assert MR % 2 == 0 $assert ACTIVATION in ["LINEAR", "RELU", "MINMAX"] $assert ACTIVATION != "MINMAX" or ARCH in ["ARM", "X86", "RELAXED"] $assert not FMA or ARCH == "RELAXED" #include #include #include $DATATYPE_SPEC = {"F32": "f32", "QC8": "f32_qc8w"}[DATATYPE] $if ACTIVATION == "MINMAX": $ WASM_F32X4_MIN={"ARM": "wasm_f32x4_min", "X86": "wasm_f32x4_pmin", "RELAXED": "wasm_f32x4_relaxed_min"}[ARCH] $ WASM_F32X4_MAX={"ARM": "wasm_f32x4_max", "X86": "wasm_f32x4_pmax", "RELAXED": "wasm_f32x4_relaxed_max"}[ARCH] $ACTIVATION_SUFFIX = {"LINEAR": ""}.get(ACTIVATION, "_" + ACTIVATION.lower()) $ISA = "wasmsimd" if not FMA and (ACTIVATION in ["LINEAR", "RELU"] or ARCH != "RELAXED") else "wasmrelaxedsimd" $ARCH_SUFFIX = "" if not FMA and (ACTIVATION in ["LINEAR", "RELU"] or ARCH == "RELAXED") else "_" + ("fma" if FMA else ARCH.lower()) $PARAMS = {"LINEAR": "xnn_f32_default_params", "RELU": "xnn_f32_relu_params", "MINMAX": "xnn_f32_minmax_params"}[ACTIVATION] void xnn_${DATATYPE_SPEC}_gemm${ACTIVATION_SUFFIX}_ukernel_${MR}x${NR}c4__${ISA}${ARCH_SUFFIX}( size_t mr, size_t nc, size_t kc, const float* restrict a, size_t a_stride, $if DATATYPE == "F32": const float* restrict w, $else: const void* restrict w, float* restrict c, size_t cm_stride, size_t cn_stride, const union ${PARAMS} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(mr != 0); assert(mr <= ${MR}); assert(nc != 0); assert(kc != 0); assert(kc % sizeof(float) == 0); assert(a != NULL); assert(w != NULL); assert(c != NULL); const float* a0 = a; float* c0 = c; $for M in range(1, MR): const float* a${M} = (const float*) ((uintptr_t) a${M-1} + a_stride); float* c${M} = (float*) ((uintptr_t) c${M-1} + cm_stride); $if M % 2 == 0: if XNN_UNPREDICTABLE(mr <= ${M}) { a${M} = a${M-1}; c${M} = c${M-1}; } $elif M + 1 == MR: if XNN_UNPREDICTABLE(mr != ${M+1}) { a${M} = a${M-1}; c${M} = c${M-1}; } $else: if XNN_UNPREDICTABLE(mr < ${M+1}) { a${M} = a${M-1}; c${M} = c${M-1}; } $if ACTIVATION == "MINMAX": const v128_t vmin = wasm_v128_load64_splat(params->wasmsimd.min); const v128_t vmax = wasm_v128_load64_splat(params->wasmsimd.max); do { v128_t vacc0x0c4 = wasm_v128_load32_zero(w); $for N in range(1, NR): $if DATATYPE == "F32": v128_t vacc0x${N}c4 = wasm_v128_load32_zero(w + ${N}); $else: v128_t vacc0x${N}c4 = wasm_v128_load32_zero((const float*) w + ${N}); $for M in range(1, MR): $for N in range(NR): v128_t vacc${M}x${N}c4 = vacc0x${N}c4; $if DATATYPE == "F32": w += ${NR}; $else: w = (const float*) w + ${NR}; size_t k = kc; for (; k >= 4 * sizeof(float); k -= 4 * sizeof(float)) { $for M in range(MR): const v128_t va${M} = wasm_v128_load(a${M}); a${M} += 4; $if DATATYPE == "F32": const v128_t vb0 = wasm_v128_load(w); $else: const v128_t vb0 = wasm_f32x4_convert_i32x4(wasm_i32x4_extend_low_i16x8(wasm_i16x8_extend_low_i8x16(wasm_v128_load32_splat((const int8_t*) w)))); $for N in range(1, NR): $if DATATYPE == "F32": const v128_t vb${N} = wasm_v128_load(w + ${N * 4}); $else: const v128_t vb${N} = wasm_f32x4_convert_i32x4(wasm_i32x4_extend_low_i16x8(wasm_i16x8_extend_low_i8x16(wasm_v128_load32_splat((const int8_t*) w + ${N * 4})))); $if DATATYPE == "F32": w += ${NR * 4}; $else: w = (const int8_t*) w + ${NR * 4}; $for M in range(MR): $for N in range(NR): $if FMA: vacc${M}x${N}c4 = wasm_f32x4_relaxed_madd(va${M}, vb${N}, vacc${M}x${N}c4); $else: vacc${M}x${N}c4 = wasm_f32x4_add(wasm_f32x4_mul(va${M}, vb${N}), vacc${M}x${N}c4); } if XNN_UNLIKELY(k != 0) { $for M in range(MR): const v128_t va${M} = wasm_v128_load(a${M}); a${M} = (const float*) ((uintptr_t) a${M} + k); $if DATATYPE == "F32": const v128_t vb0 = wasm_v128_load(w); $else: const v128_t vb0 = wasm_f32x4_convert_i32x4(wasm_i32x4_extend_low_i16x8(wasm_i16x8_extend_low_i8x16(wasm_v128_load32_splat((const int8_t*) w)))); $for N in range(1, NR): $if DATATYPE == "F32": const v128_t vb${N} = wasm_v128_load(w + ${N * 4}); $else: const v128_t vb${N} = wasm_f32x4_convert_i32x4(wasm_i32x4_extend_low_i16x8(wasm_i16x8_extend_low_i8x16(wasm_v128_load32_splat((const int8_t*) w + ${N * 4})))); $if DATATYPE == "F32": w += ${NR * 4}; $else: w = (const int8_t*) w + ${NR * 4}; const v128_t vzero = wasm_f32x4_const_splat(0.0f); $for N in range(NR): const v128_t vmask${N} = wasm_f32x4_eq(vb${N}, vzero); $for M in range(MR): $for N in range(NR): $if FMA: vacc${M}x${N}c4 = wasm_f32x4_relaxed_madd(wasm_v128_andnot(va${M}, vmask${N}), vb${N}, vacc${M}x${N}c4); $else: vacc${M}x${N}c4 = wasm_f32x4_add(wasm_f32x4_mul(wasm_v128_andnot(va${M}, vmask${N}), vb${N}), vacc${M}x${N}c4); } $for M in range(MR): const v128_t vacc${M}x01c2 = wasm_f32x4_add( wasm_v32x4_shuffle(vacc${M}x0c4, vacc${M}x1c4, 0, 4, 1, 5), wasm_v32x4_shuffle(vacc${M}x0c4, vacc${M}x1c4, 2, 6, 3, 7)); $for M in range(0, MR, 2): v128_t vacc${M}${M+1}x01 = wasm_f32x4_add( wasm_v32x4_shuffle(vacc${M}x01c2, vacc${M+1}x01c2, 0, 1, 4, 5), wasm_v32x4_shuffle(vacc${M}x01c2, vacc${M+1}x01c2, 2, 3, 6, 7)); $if DATATYPE == "QC8": const v128_t vscalex01 = wasm_v128_load64_splat(w); w = (const float*) w + 2; $for M in range(0, MR, 2): vacc${M}${M+1}x01 = wasm_f32x4_mul(vacc${M}${M+1}x01, vscalex01); $if ACTIVATION == "MINMAX": $for M in range(0, MR, 2): vacc${M}${M+1}x01 = ${WASM_F32X4_MAX}(vmin, vacc${M}${M+1}x01); $for M in range(0, MR, 2): vacc${M}${M+1}x01 = ${WASM_F32X4_MIN}(vmax, vacc${M}${M+1}x01); $elif ACTIVATION == "RELU": const v128_t vzero = wasm_i32x4_const_splat(0); $for M in range(0, MR, 2): vacc${M}${M+1}x01 = wasm_i32x4_max(vacc${M}${M+1}x01, vzero); if XNN_LIKELY(nc >= ${NR}) { $for M in reversed(range(0, MR, 2)): wasm_v128_store64_lane(c${M}, vacc${M}${M+1}x01, 0); c${M} = (float*) ((uintptr_t) c${M} + cn_stride); a${M} = (const float*) ((uintptr_t) a${M} - kc); wasm_v128_store64_lane(c${M+1}, vacc${M}${M+1}x01, 1); c${M+1} = (float*) ((uintptr_t) c${M+1} + cn_stride); a${M+1} = (const float*) ((uintptr_t) a${M+1} - kc); nc -= ${NR}; } else { assert(nc == 1); $for M in reversed(range(0, MR, 2)): wasm_v128_store32_lane(c${M}, vacc${M}${M+1}x01, 0); wasm_v128_store32_lane(c${M+1}, vacc${M}${M+1}x01, 2); nc = 0; } } while (nc != 0); }