// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert NR % 8 == 0 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" $assert ACCTYPE in ["F16", "F32"] $ACC_SUFFIX = "_f32acc" if ACCTYPE == "F32" else "" #include #include #include #include void xnn_f16${ACC_SUFFIX}_igemm_minmax_ukernel_${MR}x${NR}__avx2_broadcast( size_t mr, size_t nc, size_t kc, size_t ks, const void** restrict a, const void* restrict w, void* restrict c, size_t cm_stride, size_t cn_stride, size_t a_offset, const void* zero, const union xnn_f16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(mr != 0); assert(mr <= ${MR}); assert(nc != 0); assert(kc != 0); assert(kc % sizeof(uint16_t) == 0); assert(ks != 0); assert(ks % (${MR} * sizeof(void*)) == 0); assert(a_offset % sizeof(uint16_t) == 0); assert(a != NULL); assert(w != NULL); assert(c != NULL); uint16_t* c0 = c; $for M in range(1, MR): uint16_t* c${M} = (uint16_t*) ((uintptr_t) c${M-1} + cm_stride); $if M % 2 == 0: if XNN_UNPREDICTABLE(mr <= ${M}) { c${M} = c${M-1}; } $elif M + 1 == MR: if XNN_UNPREDICTABLE(mr != ${M+1}) { c${M} = c${M-1}; } $else: if XNN_UNPREDICTABLE(mr < ${M+1}) { c${M} = c${M-1}; } do { __m256 vacc0x${ABC[0:8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w)); $for N in range(8, NR, 8): __m256 vacc0x${ABC[N:N+8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) ((const uint16_t*) w + ${N}))); $for M in range(1, MR): $for N in range(0, NR, 8): __m256 vacc${M}x${ABC[N:N+8]} = vacc0x${ABC[N:N+8]}; w = (const uint16_t*) w + ${NR}; size_t p = ks; do { $for M in range(MR): const uint16_t* restrict a${M} = (const uint16_t*) a[${M}]; assert(a${M} != NULL); if XNN_UNPREDICTABLE(a${M} != zero) { a${M} = (const uint16_t*) ((uintptr_t) a${M} + a_offset); } a += ${MR}; size_t k = kc; do { const __m256 vb${ABC[0:8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w)); $for N in range(8, NR, 8): const __m256 vb${ABC[N:N+8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) ((const uint16_t*) w + ${N}))); w = (const uint16_t*) w + ${NR}; $for M in range(MR): const __m256 va${M} = _mm256_cvtph_ps(_mm_set1_epi16((short) *a${M})); a${M} += 1; $for M in range(MR): $for N in range(0, NR, 8): $if ACCTYPE == "F32": vacc${M}x${ABC[N:N+8]} = _mm256_fmadd_ps(va${M}, vb${ABC[N:N+8]}, vacc${M}x${ABC[N:N+8]}); $else: vacc${M}x${ABC[N:N+8]} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(va${M}, vb${ABC[N:N+8]}, vacc${M}x${ABC[N:N+8]}), _MM_FROUND_TO_NEAREST_INT)); k -= sizeof(uint16_t); } while (k != 0); p -= ${MR} * sizeof(void*); } while (p != 0); const __m256 vmin = _mm256_load_ps(params->avx.min); $for N in range(0, NR, 8): $for M in range(MR): vacc${M}x${ABC[N:N+8]} = _mm256_max_ps(vacc${M}x${ABC[N:N+8]}, vmin); const __m256 vmax = _mm256_load_ps(params->avx.max); $for N in range(0, NR, 8): $for M in range(MR): vacc${M}x${ABC[N:N+8]} = _mm256_min_ps(vacc${M}x${ABC[N:N+8]}, vmax); if XNN_LIKELY(nc >= ${NR}) { $for M in reversed(range(MR)): _mm_storeu_si128((__m128i*) c${M}, _mm256_cvtps_ph(vacc${M}x${ABC[0:8]}, _MM_FROUND_TO_NEAREST_INT)); $for N in range(8, NR, 8): _mm_storeu_si128((__m128i*) (c${M} + ${N}), _mm256_cvtps_ph(vacc${M}x${ABC[N:N+8]}, _MM_FROUND_TO_NEAREST_INT)); c${M} = (uint16_t*) ((uintptr_t) c${M} + cn_stride); a = (const void**restrict) ((uintptr_t) a - ks); nc -= ${NR}; } else { $for LOG2N in reversed(range(NR.bit_length())): $if LOG2N == 3: $for M in reversed(range(MR)): __m128i vh${M}x${ABC[0:8]} = _mm256_cvtps_ph(vacc${M}x${ABC[0:8]}, _MM_FROUND_TO_NEAREST_INT); $if NR != 1 << LOG2N: if (nc & ${1 << LOG2N}) { $if LOG2N >= 4: $for M in reversed(range(MR)): _mm_storeu_si128((__m128i*) c${M}, _mm256_cvtps_ph(vacc${M}x${ABC[0:8]}, _MM_FROUND_TO_NEAREST_INT)); $for N in range(8, 1 << LOG2N, 8): _mm_storeu_si128((__m128i*) (c${M} + ${N}), _mm256_cvtps_ph(vacc${M}x${ABC[N:N+8]}, _MM_FROUND_TO_NEAREST_INT)); $for M in reversed(range(MR)): $for N in range(0, NR - (1 << LOG2N), 8): vacc${M}x${ABC[N:N+8]} = vacc${M}x${ABC[N + (1 << LOG2N):N + (1 << LOG2N)+8]}; $for M in reversed(range(MR)): c${M} += ${1 << LOG2N}; $elif LOG2N == 3: $for M in reversed(range(MR)): _mm_storeu_si128((__m128i*) c${M}, vh${M}x${ABC[0:8]}); $for M in reversed(range(MR)): vh${M}x${ABC[0:8]} = _mm256_cvtps_ph(vacc${M}x${ABC[8:16]}, _MM_FROUND_TO_NEAREST_INT); $for M in reversed(range(MR)): c${M} += ${1 << LOG2N}; $elif LOG2N == 2: $for M in reversed(range(MR)): _mm_storel_epi64((__m128i*) c${M}, vh${M}x${ABC[0:8]}); $for M in reversed(range(MR)): vh${M}x${ABC[0:8]} = _mm_unpackhi_epi64(vh${M}x${ABC[0:8]}, vh${M}x${ABC[0:8]}); $for M in reversed(range(MR)): c${M} += 4; $elif LOG2N == 1: $for M in reversed(range(MR)): _mm_storeu_si32(c${M}, vh${M}x${ABC[0:8]}); $for M in reversed(range(MR)): vh${M}x${ABC[0:8]} = _mm_srli_epi64(vh${M}x${ABC[0:8]}, 32); $for M in reversed(range(MR)): c${M} += 2; $elif LOG2N == 0: $for M in reversed(range(MR)): *c${M} = _mm_extract_epi16(vh${M}x${ABC[0:8]}, 0); } nc = 0; } } while (nc != 0); }