#include #include #ifndef EMSCRIPTEN #include #endif #include #include #include #include #include #if (defined(__i386__) || defined(__x86_64__)) && defined(__F16C__) #include #endif #if defined(__ARM_NEON__) || defined(__aarch64__) #include #endif #ifdef FP16_COMPARATIVE_BENCHMARKS #include #include #include #include #include #endif static void fp16_ieee_to_fp32_bits(benchmark::State& state) { const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); auto rng = std::bind(std::uniform_real_distribution(-1.0f, 1.0f), std::mt19937(seed)); std::vector fp16(state.range(0)); std::vector fp32(state.range(0)); std::generate(fp16.begin(), fp16.end(), [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); while (state.KeepRunning()) { uint16_t* input = fp16.data(); benchmark::DoNotOptimize(input); uint32_t* output = fp32.data(); const size_t n = state.range(0); for (size_t i = 0; i < n; i++) { output[i] = fp16_ieee_to_fp32_bits(input[i]); } benchmark::DoNotOptimize(output); } state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); } BENCHMARK(fp16_ieee_to_fp32_bits)->RangeMultiplier(2)->Range(1<<10, 64<<20); static void fp16_ieee_to_fp32_value(benchmark::State& state) { const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); auto rng = std::bind(std::uniform_real_distribution(-1.0f, 1.0f), std::mt19937(seed)); std::vector fp16(state.range(0)); std::vector fp32(state.range(0)); std::generate(fp16.begin(), fp16.end(), [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); while (state.KeepRunning()) { uint16_t* input = fp16.data(); benchmark::DoNotOptimize(input); float* output = fp32.data(); const size_t n = state.range(0); for (size_t i = 0; i < n; i++) { output[i] = fp16_ieee_to_fp32_value(input[i]); } benchmark::DoNotOptimize(output); } state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); } BENCHMARK(fp16_ieee_to_fp32_value)->RangeMultiplier(2)->Range(1<<10, 64<<20); #ifndef EMSCRIPTEN static void fp16_ieee_to_fp32_psimd(benchmark::State& state) { const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); auto rng = std::bind(std::uniform_real_distribution(-1.0f, 1.0f), std::mt19937(seed)); std::vector fp16(state.range(0)); std::vector fp32(state.range(0)); std::generate(fp16.begin(), fp16.end(), [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); while (state.KeepRunning()) { uint16_t* input = fp16.data(); benchmark::DoNotOptimize(input); float* output = fp32.data(); const size_t n = state.range(0); for (size_t i = 0; i < n - 4; i += 4) { psimd_store_f32(&output[i], fp16_ieee_to_fp32_psimd( psimd_load_u16(&input[i]))); } const psimd_u16 last_vector = { input[n - 4], input[n - 3], input[n - 2], input[n - 1] }; psimd_store_f32(&output[n - 4], fp16_ieee_to_fp32_psimd(last_vector)); benchmark::DoNotOptimize(output); } state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); } BENCHMARK(fp16_ieee_to_fp32_psimd)->RangeMultiplier(2)->Range(1<<10, 64<<20); static void fp16_ieee_to_fp32x2_psimd(benchmark::State& state) { const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); auto rng = std::bind(std::uniform_real_distribution(-1.0f, 1.0f), std::mt19937(seed)); std::vector fp16(state.range(0)); std::vector fp32(state.range(0)); std::generate(fp16.begin(), fp16.end(), [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); while (state.KeepRunning()) { uint16_t* input = fp16.data(); benchmark::DoNotOptimize(input); float* output = fp32.data(); const size_t n = state.range(0); for (size_t i = 0; i < n; i += 8) { const psimd_f32x2 data = fp16_ieee_to_fp32x2_psimd( psimd_load_u16(&input[i])); psimd_store_f32(&output[i], data.lo); psimd_store_f32(&output[i + 4], data.hi); } benchmark::DoNotOptimize(output); } state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); } BENCHMARK(fp16_ieee_to_fp32x2_psimd)->RangeMultiplier(2)->Range(1<<10, 64<<20); #endif #if (defined(__i386__) || defined(__x86_64__)) && defined(__F16C__) static void hardware_mm_cvtph_ps(benchmark::State& state) { const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); auto rng = std::bind(std::uniform_real_distribution(-1.0f, 1.0f), std::mt19937(seed)); std::vector fp16(state.range(0)); std::vector fp32(state.range(0)); std::generate(fp16.begin(), fp16.end(), [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); while (state.KeepRunning()) { uint16_t* input = fp16.data(); benchmark::DoNotOptimize(input); float* output = fp32.data(); const size_t n = state.range(0); for (size_t i = 0; i < n; i += 4) { _mm_storeu_ps(&output[i], _mm_cvtph_ps( _mm_loadl_epi64(static_cast(static_cast(&input[i]))))); } benchmark::DoNotOptimize(output); } state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); } BENCHMARK(hardware_mm_cvtph_ps)->RangeMultiplier(2)->Range(1<<10, 64<<20); static void hardware_mm256_cvtph_ps(benchmark::State& state) { const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); auto rng = std::bind(std::uniform_real_distribution(-1.0f, 1.0f), std::mt19937(seed)); std::vector fp16(state.range(0)); std::vector fp32(state.range(0)); std::generate(fp16.begin(), fp16.end(), [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); while (state.KeepRunning()) { uint16_t* input = fp16.data(); benchmark::DoNotOptimize(input); float* output = fp32.data(); const size_t n = state.range(0); for (size_t i = 0; i < n; i += 8) { _mm256_storeu_ps(&output[i], _mm256_cvtph_ps( _mm_loadu_si128(static_cast(static_cast(&input[i]))))); } benchmark::DoNotOptimize(output); } state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); } BENCHMARK(hardware_mm256_cvtph_ps)->RangeMultiplier(2)->Range(1<<10, 64<<20); #endif #if defined(__ARM_NEON_FP) && (__ARM_NEON_FP & 0x2) || defined(__aarch64__) static void hardware_vcvt_f32_f16(benchmark::State& state) { const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); auto rng = std::bind(std::uniform_real_distribution(-1.0f, 1.0f), std::mt19937(seed)); std::vector fp16(state.range(0)); std::vector fp32(state.range(0)); std::generate(fp16.begin(), fp16.end(), [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); while (state.KeepRunning()) { uint16_t* input = fp16.data(); benchmark::DoNotOptimize(input); float* output = fp32.data(); const size_t n = state.range(0); #if defined(__aarch64__) const unsigned int fpcr = __builtin_aarch64_get_fpcr(); /* Disable flush-to-zero (bit 24) and Alternative FP16 format (bit 26) */ __builtin_aarch64_set_fpcr(fpcr & 0xF6FFFFFFu); #else unsigned int fpscr; __asm__ __volatile__ ("VMRS %[fpscr], fpscr" : [fpscr] "=r" (fpscr)); /* Disable flush-to-zero (bit 24) and Alternative FP16 format (bit 26) */ __asm__ __volatile__ ("VMSR fpscr, %[fpscr]" : : [fpscr] "r" (fpscr & 0xF6FFFFFFu)); #endif for (size_t i = 0; i < n; i += 4) { vst1q_f32(&output[i], vcvt_f32_f16( (float16x4_t) vld1_u16(&input[i]))); } #if defined(__aarch64__) __builtin_aarch64_set_fpcr(fpcr); #else __asm__ __volatile__ ("VMSR fpscr, %[fpscr]" :: [fpscr] "r" (fpscr)); #endif benchmark::DoNotOptimize(output); } state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); } BENCHMARK(hardware_vcvt_f32_f16)->RangeMultiplier(2)->Range(1<<10, 64<<20); #endif #ifdef FP16_COMPARATIVE_BENCHMARKS static void TH_halfbits2float(benchmark::State& state) { const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); auto rng = std::bind(std::uniform_real_distribution(-1.0f, 1.0f), std::mt19937(seed)); std::vector fp16(state.range(0)); std::vector fp32(state.range(0)); std::generate(fp16.begin(), fp16.end(), [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); while (state.KeepRunning()) { uint16_t* input = fp16.data(); benchmark::DoNotOptimize(input); float* output = fp32.data(); const size_t n = state.range(0); for (size_t i = 0; i < n; i++) { TH_halfbits2float(&input[i], &output[i]); } benchmark::DoNotOptimize(output); } state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); } BENCHMARK(TH_halfbits2float)->RangeMultiplier(2)->Range(1<<10, 64<<20); static void npy_halfbits_to_floatbits(benchmark::State& state) { const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); auto rng = std::bind(std::uniform_real_distribution(-1.0f, 1.0f), std::mt19937(seed)); std::vector fp16(state.range(0)); std::vector fp32(state.range(0)); std::generate(fp16.begin(), fp16.end(), [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); while (state.KeepRunning()) { uint16_t* input = fp16.data(); benchmark::DoNotOptimize(input); uint32_t* output = fp32.data(); const size_t n = state.range(0); for (size_t i = 0; i < n; i++) { output[i] = npy_halfbits_to_floatbits(input[i]); } benchmark::DoNotOptimize(output); } state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); } BENCHMARK(npy_halfbits_to_floatbits)->RangeMultiplier(2)->Range(1<<10, 64<<20); static void Eigen_half_to_float(benchmark::State& state) { const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); auto rng = std::bind(std::uniform_real_distribution(-1.0f, 1.0f), std::mt19937(seed)); std::vector fp16(state.range(0)); std::vector fp32(state.range(0)); std::generate(fp16.begin(), fp16.end(), [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); while (state.KeepRunning()) { uint16_t* input = fp16.data(); benchmark::DoNotOptimize(input); float* output = fp32.data(); const size_t n = state.range(0); for (size_t i = 0; i < n; i++) { output[i] = Eigen::half_impl::half_to_float( Eigen::half_impl::raw_uint16_to_half(input[i])); } benchmark::DoNotOptimize(output); } state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); } BENCHMARK(Eigen_half_to_float)->RangeMultiplier(2)->Range(1<<10, 64<<20); static void Float16Compressor_decompress(benchmark::State& state) { const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); auto rng = std::bind(std::uniform_real_distribution(-1.0f, 1.0f), std::mt19937(seed)); std::vector fp16(state.range(0)); std::vector fp32(state.range(0)); std::generate(fp16.begin(), fp16.end(), [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); while (state.KeepRunning()) { uint16_t* input = fp16.data(); benchmark::DoNotOptimize(input); float* output = fp32.data(); const size_t n = state.range(0); for (size_t i = 0; i < n; i++) { output[i] = Float16Compressor::decompress(input[i]); } benchmark::DoNotOptimize(output); } state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); } BENCHMARK(Float16Compressor_decompress)->RangeMultiplier(2)->Range(1<<10, 64<<20); static void half_float_detail_half2float_table(benchmark::State& state) { const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); auto rng = std::bind(std::uniform_real_distribution(-1.0f, 1.0f), std::mt19937(seed)); std::vector fp16(state.range(0)); std::vector fp32(state.range(0)); std::generate(fp16.begin(), fp16.end(), [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); while (state.KeepRunning()) { uint16_t* input = fp16.data(); benchmark::DoNotOptimize(input); float* output = fp32.data(); const size_t n = state.range(0); for (size_t i = 0; i < n; i++) { output[i] = half_float::detail::half2float_impl(input[i], half_float::detail::true_type()); } benchmark::DoNotOptimize(output); } state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); } BENCHMARK(half_float_detail_half2float_table)->RangeMultiplier(2)->Range(1<<10, 64<<20); static void half_float_detail_half2float_branch(benchmark::State& state) { const uint_fast32_t seed = std::chrono::system_clock::now().time_since_epoch().count(); auto rng = std::bind(std::uniform_real_distribution(-1.0f, 1.0f), std::mt19937(seed)); std::vector fp16(state.range(0)); std::vector fp32(state.range(0)); std::generate(fp16.begin(), fp16.end(), [&rng]{ return fp16_ieee_from_fp32_value(rng()); }); while (state.KeepRunning()) { uint16_t* input = fp16.data(); benchmark::DoNotOptimize(input); float* output = fp32.data(); const size_t n = state.range(0); for (size_t i = 0; i < n; i++) { output[i] = half_float::detail::half2float_impl(input[i], half_float::detail::false_type()); } benchmark::DoNotOptimize(output); } state.SetItemsProcessed(int64_t(state.iterations()) * int64_t(state.range(0))); } BENCHMARK(half_float_detail_half2float_branch)->RangeMultiplier(2)->Range(1<<10, 64<<20); #endif BENCHMARK_MAIN();