// Copyright 2023 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert (P, H) == (19, 9) $assert FMA in [0, 3] $assert BATCH_TILE % 8 == 0 $assert BATCH_TILE >= 8 $SIMD_TILE = BATCH_TILE // 8 #include #include #include #include #include #include #include #include #include $POLY_SUFFIX = "p%dh%dt2" % (P, H) $PARAMS_STRUCT = "avx_polynomial_" + POLY_SUFFIX $ISA = "fma3" if FMA else "f16c" void xnn_f16_vtanh_ukernel__${ISA}_polynomial_${POLY_SUFFIX}_x${BATCH_TILE}( size_t batch, const void* input, void* output, const union xnn_f16_tanh_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(batch != 0); assert(batch % sizeof(uint16_t) == 0); assert(input != NULL); assert(output != NULL); const __m256 vneg_sat_cutoff = _mm256_load_ps(params->${PARAMS_STRUCT}.neg_sat_cutoff); const __m256 vpos_sat_cutoff = _mm256_load_ps(params->${PARAMS_STRUCT}.pos_sat_cutoff); $for i in reversed(range(3, P+1, 2)): const __m256 vc${i} = _mm256_load_ps(params->${PARAMS_STRUCT}.c${i}); const uint16_t* i = (const uint16_t*) input; uint16_t* o = (uint16_t*) output; $if BATCH_TILE > 8: for (; batch >= ${BATCH_TILE} * sizeof(uint16_t); batch -= ${BATCH_TILE} * sizeof(uint16_t)) { __m256 vx0 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); $for N in range(1, SIMD_TILE): __m256 vx${N} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i + ${N * 8}))); i += ${BATCH_TILE}; $for N in range(SIMD_TILE): vx${N} = _mm256_max_ps(vneg_sat_cutoff, vx${N}); $for N in range(SIMD_TILE): vx${N} = _mm256_min_ps(vpos_sat_cutoff, vx${N}); $for N in range(SIMD_TILE): const __m256 vt${N} = _mm256_mul_ps(vx${N}, vx${N}); $if FMA == 3: $for N in range(SIMD_TILE): __m256 vp${N} = vc${P}; $for i in reversed(range(3, P, 2)): $for N in range(SIMD_TILE): vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc${i}); $else: $for N in range(SIMD_TILE): __m256 vp${N} = _mm256_add_ps(_mm256_mul_ps(vc${P}, vt${N}), vc${P-2}); $for i in reversed(range(3, P-2, 2)): $for N in range(SIMD_TILE): vp${N} = _mm256_add_ps(_mm256_mul_ps(vp${N}, vt${N}), vc${i}); $for N in range(SIMD_TILE): const __m256 vxt${N} = _mm256_mul_ps(vx${N}, vt${N}); $for N in range(SIMD_TILE): $if FMA == 3: const __m256 vy${N} = _mm256_fmadd_ps(vp${N}, vxt${N}, vx${N}); $else: const __m256 vy${N} = _mm256_add_ps(_mm256_mul_ps(vp${N}, vxt${N}), vx${N}); _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vy0, _MM_FROUND_TO_NEAREST_INT)); $for N in range(1, SIMD_TILE): _mm_storeu_si128((__m128i*) (o + ${N * 8}), _mm256_cvtps_ph(vy${N}, _MM_FROUND_TO_NEAREST_INT)); o += ${BATCH_TILE}; } for (; batch >= 8 * sizeof(uint16_t); batch -= 8 * sizeof(uint16_t)) { __m256 vx = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i)); i += 8; vx = _mm256_max_ps(vneg_sat_cutoff, vx); vx = _mm256_min_ps(vpos_sat_cutoff, vx); const __m256 vt = _mm256_mul_ps(vx, vx); $if FMA == 3: __m256 vp = vc${P}; $for i in reversed(range(3, P, 2)): vp = _mm256_fmadd_ps(vp, vt, vc${i}); $else: __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc${P}, vt), vc${P-2}); $for i in reversed(range(3, P-2, 2)): vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc${i}); const __m256 vxt = _mm256_mul_ps(vx, vt); $if FMA == 3: const __m256 vy = _mm256_fmadd_ps(vp, vxt, vx); $else: const __m256 vy = _mm256_add_ps(_mm256_mul_ps(vp, vxt), vx); _mm_storeu_si128((__m128i*) o, _mm256_cvtps_ph(vy, _MM_FROUND_TO_NEAREST_INT)); o += 8; } if (batch != 0) { __m256 vx = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) i)); vx = _mm256_max_ps(vneg_sat_cutoff, vx); vx = _mm256_min_ps(vpos_sat_cutoff, vx); const __m256 vt = _mm256_mul_ps(vx, vx); $if FMA == 3: __m256 vp = vc${P}; $for i in reversed(range(3, P, 2)): vp = _mm256_fmadd_ps(vp, vt, vc${i}); $else: __m256 vp = _mm256_add_ps(_mm256_mul_ps(vc${P}, vt), vc${P-2}); $for i in reversed(range(3, P-2, 2)): vp = _mm256_add_ps(_mm256_mul_ps(vp, vt), vc${i}); const __m256 vxt = _mm256_mul_ps(vx, vt); $if FMA == 3: const __m256 vy = _mm256_fmadd_ps(vp, vxt, vx); $else: const __m256 vy = _mm256_add_ps(_mm256_mul_ps(vp, vxt), vx); __m128i vh = _mm256_cvtps_ph(vy, _MM_FROUND_TO_NEAREST_INT); if (batch & (4 * sizeof(uint16_t))) { _mm_storel_epi64((__m128i*) o, vh); vh = _mm_unpackhi_epi64(vh, vh); o += 4; } if (batch & (2 * sizeof(uint16_t))) { _mm_storeu_si32(o, vh); vh = _mm_srli_epi64(vh, 32); o += 2; } if (batch & (1 * sizeof(uint16_t))) { *o = (uint16_t) _mm_extract_epi16(vh, 0); } } }