--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: final_V1-bert-text-classification-model results: [] --- # final_V1-bert-text-classification-model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1649 - Accuracy: 0.9713 - F1: 0.8328 - Precision: 0.8290 - Recall: 0.8375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.7173 | 0.11 | 50 | 1.7812 | 0.3445 | 0.1475 | 0.1755 | 0.1881 | | 0.9537 | 0.22 | 100 | 0.9779 | 0.7416 | 0.4399 | 0.4301 | 0.4701 | | 0.373 | 0.33 | 150 | 0.6741 | 0.8321 | 0.6187 | 0.6018 | 0.6423 | | 0.2625 | 0.44 | 200 | 0.3897 | 0.9070 | 0.6684 | 0.6503 | 0.6892 | | 0.2216 | 0.55 | 250 | 0.3971 | 0.9089 | 0.6670 | 0.6465 | 0.6920 | | 0.1583 | 0.66 | 300 | 0.3601 | 0.9029 | 0.6816 | 0.7957 | 0.6757 | | 0.1661 | 0.76 | 350 | 0.2266 | 0.9180 | 0.6950 | 0.7317 | 0.7019 | | 0.112 | 0.87 | 400 | 0.2525 | 0.9494 | 0.8020 | 0.7955 | 0.8132 | | 0.0857 | 0.98 | 450 | 0.2701 | 0.9459 | 0.8124 | 0.8060 | 0.8232 | | 0.1223 | 1.09 | 500 | 0.1781 | 0.9631 | 0.8281 | 0.8251 | 0.8319 | | 0.0641 | 1.2 | 550 | 0.2162 | 0.9552 | 0.8236 | 0.8229 | 0.8258 | | 0.0907 | 1.31 | 600 | 0.1486 | 0.9705 | 0.8351 | 0.8357 | 0.8346 | | 0.0738 | 1.42 | 650 | 0.1380 | 0.9696 | 0.8300 | 0.8276 | 0.8331 | | 0.0946 | 1.53 | 700 | 0.1577 | 0.9705 | 0.8357 | 0.8370 | 0.8345 | | 0.0476 | 1.64 | 750 | 0.1497 | 0.9707 | 0.8349 | 0.8337 | 0.8363 | | 0.0873 | 1.75 | 800 | 0.1722 | 0.9655 | 0.8318 | 0.8288 | 0.8353 | | 0.0487 | 1.86 | 850 | 0.1782 | 0.9647 | 0.8312 | 0.8283 | 0.8345 | | 0.0548 | 1.97 | 900 | 0.1610 | 0.9666 | 0.8336 | 0.8329 | 0.8346 | | 0.0492 | 2.07 | 950 | 0.1423 | 0.9688 | 0.8338 | 0.8287 | 0.8393 | | 0.0279 | 2.18 | 1000 | 0.1707 | 0.9669 | 0.8325 | 0.8287 | 0.8371 | | 0.0401 | 2.29 | 1050 | 0.1583 | 0.9688 | 0.8337 | 0.8300 | 0.8382 | | 0.0313 | 2.4 | 1100 | 0.1799 | 0.9647 | 0.8306 | 0.8274 | 0.8348 | | 0.025 | 2.51 | 1150 | 0.1661 | 0.9669 | 0.8320 | 0.8311 | 0.8335 | | 0.0043 | 2.62 | 1200 | 0.1933 | 0.9647 | 0.8305 | 0.8280 | 0.8339 | | 0.0115 | 2.73 | 1250 | 0.1570 | 0.9696 | 0.8328 | 0.8308 | 0.8352 | | 0.0198 | 2.84 | 1300 | 0.1538 | 0.9702 | 0.8340 | 0.8328 | 0.8355 | | 0.0085 | 2.95 | 1350 | 0.1591 | 0.9694 | 0.8337 | 0.8327 | 0.8351 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2