--- license: apache-2.0 tags: - generated_from_trainer datasets: - data_set metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned-ner-offer results: - task: name: Token Classification type: token-classification dataset: name: data_set type: data_set config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.2254335260115607 - name: Recall type: recall value: 0.24528301886792453 - name: F1 type: f1 value: 0.23493975903614459 - name: Accuracy type: accuracy value: 0.9209345919528688 --- # finetuned-ner-offer This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the data_set dataset. It achieves the following results on the evaluation set: - Loss: 0.3242 - Precision: 0.2254 - Recall: 0.2453 - F1: 0.2349 - Accuracy: 0.9209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 100 | 0.3344 | 0.2162 | 0.2013 | 0.2085 | 0.9217 | | No log | 2.0 | 200 | 0.3167 | 0.1804 | 0.2201 | 0.1983 | 0.9204 | | No log | 3.0 | 300 | 0.3242 | 0.2254 | 0.2453 | 0.2349 | 0.9209 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2