--- license: mit language: - en library_name: peft tags: - ESM-2 - QLoRA - Binding Sites - biology --- # ESM-2 QLoRA These are the checkpoints for the first ever QLoRA for ESM-2! They haven't been checked for overfitting yet, so use with caution! You can load and use them similarly to the LoRA models. This is the smallest `esm2_t6_8M_UR50D` model, so the metrics aren't great. Scaling to larger models for better metrics is in progress. These checkpoints were trained using [the 600K dataset](https://huggingface.co/datasets/AmelieSchreiber/600K_data). ## QLoRA Info Note, we are only training 0.58% of the parameters, using only the query, key, and value weight matrices. ``` trainable params: 23682 || all params: 4075265 || trainable%: 0.5811155838945443 ``` ## Testing for Overfitting ### Checkpoint 1 ### Checkpoint 2 ### Checkpoint 3 ### Checkpoint 4 ```python Train metrics: {'eval_loss': 0.24070295691490173, 'eval_accuracy': 0.9018779246397052, 'eval_precision': 0.16624103834249204, 'eval_recall': 0.8651772818812425, 'eval_f1': 0.27889357183237473, 'eval_auc': 0.8839390799308487, 'eval_mcc': 0.3536803490333407} Test metrics: {'eval_loss': 0.26776671409606934, 'eval_accuracy': 0.8902711124906878, 'eval_precision': 0.13008662855482372, 'eval_recall': 0.7084623832213568, 'eval_f1': 0.219811797752809, 'eval_auc': 0.8013943890942485, 'eval_mcc': 0.2721459410994918} ```