{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"id": "91af3f42-063e-4d5c-ae16-c7c54599d582",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of entries with angle brackets: 35\n",
"Number of remaining rows: 16460737\n",
"Number of distinct protein families: 10258\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 10258/10258 [00:04<00:00, 2232.02family/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of distinct protein families in the test set: 2076\n",
"Number of distinct protein families in the train set: 8182\n",
"Percentage of families in test set: 0.20237863131214662\n"
]
},
{
"data": {
"text/plain": [
"(3307395, 13153342)"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"from tqdm import tqdm\n",
"\n",
"# Load the dataset\n",
"file_path = 'binding_sites_uniprot_16M.tsv'\n",
"data = pd.read_csv(file_path, sep='\\t')\n",
"\n",
"# Display the first few rows of the dataframe\n",
"#data.head()\n",
"\n",
"# Filter out rows with NaN values in the 'Protein families' column\n",
"data = data[pd.notna(data['Protein families'])]\n",
"\n",
"# Display the first few rows of the modified dataframe\n",
"#data.head()\n",
"\n",
"# Group the data by 'Protein families' and get the size of each group\n",
"family_sizes = data.groupby('Protein families').size()\n",
"\n",
"# Create a new column with the size of each family\n",
"data['Family size'] = data['Protein families'].map(family_sizes)\n",
"\n",
"# Sort the data by 'Family size' in descending order and then by 'Protein families'\n",
"data_sorted = data.sort_values(by=['Family size', 'Protein families'], ascending=[False, True])\n",
"\n",
"# Drop the 'Family size' column as it is no longer needed\n",
"data_sorted.drop(columns='Family size', inplace=True)\n",
"\n",
"# Define a function to extract the location from the binding and active site columns\n",
"def extract_location(site_info):\n",
" if pd.isnull(site_info):\n",
" return None\n",
" locations = []\n",
" for info in site_info.split(';'):\n",
" if 'BINDING' in info or 'ACT_SITE' in info:\n",
" locations.append(info.split()[1])\n",
" return '; '.join(locations)\n",
"\n",
"# Apply the function to the 'Binding site' and 'Active site' columns to extract the locations\n",
"data_sorted['Binding site'] = data_sorted['Binding site'].apply(extract_location)\n",
"data_sorted['Active site'] = data_sorted['Active site'].apply(extract_location)\n",
"\n",
"# Display the first few rows of the modified dataframe\n",
"#data_sorted.head()\n",
"\n",
"# Create a new column that combines the 'Binding site' and 'Active site' columns\n",
"data_sorted['Binding-Active site'] = data_sorted['Binding site'].astype(str) + '; ' + data_sorted['Active site'].astype(str)\n",
"\n",
"# Replace 'nan' values with None\n",
"data_sorted['Binding-Active site'] = data_sorted['Binding-Active site'].replace('nan; nan', None)\n",
"\n",
"# Display the first few rows of the updated dataframe\n",
"#data_sorted.head()\n",
"\n",
"# Find entries in the \"Binding-Active site\" column containing '<' or '>'\n",
"entries_with_angle_brackets = data_sorted['Binding-Active site'].str.contains('<|>', na=False)\n",
"\n",
"# Get the number of such entries\n",
"num_entries_with_angle_brackets = entries_with_angle_brackets.sum()\n",
"\n",
"# Display the number of entries containing '<' or '>'\n",
"print(f\"Number of entries with angle brackets: {num_entries_with_angle_brackets}\")\n",
"\n",
"# Remove all rows where the \"Binding-Active site\" column contains '<' or '>'\n",
"data_filtered = data_sorted[~entries_with_angle_brackets]\n",
"\n",
"# Get the number of remaining rows\n",
"num_remaining_rows = data_filtered.shape[0]\n",
"\n",
"# Display the number of remaining rows\n",
"print(f\"Number of remaining rows: {num_remaining_rows}\")\n",
"\n",
"# Get the number of distinct protein families\n",
"num_distinct_families = data_filtered['Protein families'].nunique()\n",
"\n",
"# Display the number of distinct protein families\n",
"print(f\"Number of distinct protein families: {num_distinct_families}\")\n",
"\n",
"# Define the target number of rows for the test set (approximately 20% of the data)\n",
"target_test_rows = int(0.20 * num_remaining_rows)\n",
"\n",
"# Get unique protein families\n",
"unique_families = data_filtered['Protein families'].unique()\n",
"\n",
"# Shuffle the unique families to randomize the selection\n",
"np.random.shuffle(unique_families)\n",
"\n",
"# Group the data by 'Protein families' to facilitate faster family-wise selection\n",
"grouped_data = data_filtered.groupby('Protein families')\n",
"\n",
"# Initialize variables to keep track of the selected rows for the test and train sets\n",
"test_rows = []\n",
"current_test_rows = 0\n",
"\n",
"# Initialize a flag to indicate whether the threshold has been crossed\n",
"threshold_crossed = False\n",
"\n",
"# Initialize a variable to keep track of the previous family\n",
"previous_family = None\n",
"\n",
"# Loop through the shuffled families and add rows to the test set until we reach the target number of rows\n",
"for family in tqdm(unique_families, unit=\"family\"):\n",
" family_rows = grouped_data.get_group(family).index.tolist()\n",
" # If the threshold is not yet crossed, or the family is the same as the previous family, add the family to the test set\n",
" if not threshold_crossed or (previous_family == family):\n",
" test_rows.extend(family_rows)\n",
" current_test_rows += len(family_rows)\n",
" previous_family = family # Keep track of the previous family\n",
" # Check if the threshold is crossed with the addition of the current family\n",
" if current_test_rows >= target_test_rows:\n",
" threshold_crossed = True # Set the flag to True once the threshold is crossed\n",
"\n",
"# Get the indices of the rows for the train set (all rows not in the test set) using set operations for efficiency\n",
"train_rows = set(data_filtered.index) - set(test_rows)\n",
"\n",
"# Create the test and train datasets using loc indexer with list of indices\n",
"test_df = data_filtered.loc[list(test_rows)]\n",
"train_df = data_filtered.loc[list(train_rows)]\n",
"\n",
"# Print the number of distinct protein families in the test and train sets\n",
"num_test_families = test_df['Protein families'].nunique()\n",
"num_train_families = train_df['Protein families'].nunique()\n",
"print(f\"Number of distinct protein families in the test set: {num_test_families}\")\n",
"print(f\"Number of distinct protein families in the train set: {num_train_families}\")\n",
"percentage = num_test_families/(num_test_families+num_train_families)\n",
"print(f\"Percentage of families in test set: {percentage}\")\n",
"\n",
"test_df.shape[0], train_df.shape[0]\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "772edd92-5137-486a-8a81-8ab7bf51568f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of common families: 0\n",
"No common families between test and train datasets.\n"
]
}
],
"source": [
"# Get the unique families in the test and train datasets\n",
"unique_test_families = set(test_df['Protein families'].unique())\n",
"unique_train_families = set(train_df['Protein families'].unique())\n",
"\n",
"# Find the common families between the test and train datasets\n",
"common_families = unique_test_families.intersection(unique_train_families)\n",
"\n",
"# Output the common families and their count\n",
"print(f\"Number of common families: {len(common_families)}\")\n",
"if len(common_families) > 0:\n",
" print(f\"Common families: {common_families}\")\n",
"else:\n",
" print(\"No common families between test and train datasets.\")\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "bc8825d6-60f8-4029-a4ab-a2317b170d09",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of test rows with question mark: 0\n",
"Number of train rows with question mark: 2\n",
"Number of remaining test rows: 3307395\n",
"Number of remaining train rows: 13153340\n"
]
}
],
"source": [
"import re\n",
"\n",
"# Find rows where the \"Binding-Active site\" column contains the character \"?\", treating \"?\" as a literal character\n",
"test_rows_with_question_mark = test_df[test_df['Binding-Active site'].str.contains('\\?', na=False, regex=True)]\n",
"train_rows_with_question_mark = train_df[train_df['Binding-Active site'].str.contains('\\?', na=False, regex=True)]\n",
"\n",
"# Get the number of such rows in both datasets\n",
"num_test_rows_with_question_mark = len(test_rows_with_question_mark)\n",
"num_train_rows_with_question_mark = len(train_rows_with_question_mark)\n",
"\n",
"print(f\"Number of test rows with question mark: {num_test_rows_with_question_mark}\")\n",
"print(f\"Number of train rows with question mark: {num_train_rows_with_question_mark}\")\n",
"\n",
"# Delete the rows containing '?' in the \"Binding-Active site\" column\n",
"test_df = test_df.drop(test_rows_with_question_mark.index)\n",
"train_df = train_df.drop(train_rows_with_question_mark.index)\n",
"\n",
"# Check the number of remaining rows in both datasets\n",
"remaining_test_rows = test_df.shape[0]\n",
"remaining_train_rows = train_df.shape[0]\n",
"\n",
"print(f\"Number of remaining test rows: {remaining_test_rows}\")\n",
"print(f\"Number of remaining train rows: {remaining_train_rows}\")\n",
"\n",
"def expand_ranges(s):\n",
" \"\"\"Expand ranges in a string.\"\"\"\n",
" return re.sub(r'(\\d+)\\.\\.(\\d+)', lambda m: ', '.join(map(str, range(int(m.group(1)), int(m.group(2))+1))), str(s))\n",
"\n",
"# Apply the function to expand ranges in the \"Binding-Active site\" column in both datasets\n",
"test_df['Binding-Active site'] = test_df['Binding-Active site'].apply(expand_ranges)\n",
"train_df['Binding-Active site'] = train_df['Binding-Active site'].apply(expand_ranges)\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d91da865-495a-4c1d-91ed-0ebeff1ecd50",
"metadata": {},
"outputs": [],
"source": [
"def convert_to_binary_list(binding_active_str, sequence_len):\n",
" \"\"\"Convert a Binding-Active site string to a binary list based on the sequence length.\"\"\"\n",
" # Step 2: Create a list of 0s with length equal to the sequence length\n",
" binary_list = [0] * sequence_len\n",
" \n",
" # Step 3: Retrieve the indices and set the corresponding positions to 1\n",
" if pd.notna(binding_active_str):\n",
" # Get the indices from the binding-active site string\n",
" indices = [int(x) - 1 for segment in binding_active_str.split(';') for x in segment.split(',') if x.strip().isdigit()]\n",
" for idx in indices:\n",
" # Ensure the index is within the valid range\n",
" if 0 <= idx < sequence_len:\n",
" binary_list[idx] = 1\n",
" \n",
" # Step 4: Return the binary list\n",
" return binary_list\n",
"\n",
"# Apply the function to both datasets\n",
"test_df['Binding-Active site'] = test_df.apply(lambda row: convert_to_binary_list(row['Binding-Active site'], len(row['Sequence'])), axis=1)\n",
"train_df['Binding-Active site'] = train_df.apply(lambda row: convert_to_binary_list(row['Binding-Active site'], len(row['Sequence'])), axis=1)\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4cea2656-75eb-4350-b1a6-704c18793473",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Entry | \n",
" Protein families | \n",
" Binding site | \n",
" Active site | \n",
" Sequence | \n",
" Binding-Active site | \n",
"
\n",
" \n",
" \n",
" \n",
" 791321 | \n",
" A0A0C2CBT0 | \n",
" TDD superfamily, TSR3 family; Protein kinase s... | \n",
" 275; 323; 346 | \n",
" None | \n",
" MFDVFSGHNDAVLCVQYRDQESLAVSGSADNSIKCWDTRTGRPEMT... | \n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... | \n",
"
\n",
" \n",
" 1008964 | \n",
" A0A0N4V212 | \n",
" TDD superfamily, TSR3 family; Protein kinase s... | \n",
" 131; 179; 202 | \n",
" None | \n",
" MVGYGVRARASGYHGRSKFRVKNKRKADKSYAENVSELAADSSRAI... | \n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... | \n",
"
\n",
" \n",
" 1009019 | \n",
" A0A0N4XGU1 | \n",
" TDD superfamily, TSR3 family; Protein kinase s... | \n",
" 73; 121; 178 | \n",
" None | \n",
" MGKKGREQHGNKRTNKSRHADAGDAEPLSSHGEEDSESLDESRDDH... | \n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... | \n",
"
\n",
" \n",
" 1837901 | \n",
" A0A1I8B1G5 | \n",
" TDD superfamily, TSR3 family; Protein kinase s... | \n",
" 40; 88; 111 | \n",
" None | \n",
" MASTDSSQSSDEDAKVEKAKKMPCILAMFDFGQCDPKRCSGRKLCR... | \n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... | \n",
"
\n",
" \n",
" 5447097 | \n",
" A0A6V7USP8 | \n",
" TDD superfamily, TSR3 family; Protein kinase s... | \n",
" 61; 109; 132 | \n",
" None | \n",
" MLFMVVPVLIMMQVDVVAIKKMTNTDSSESSGDDAVDDKSKKMPCI... | \n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Entry Protein families \\\n",
"791321 A0A0C2CBT0 TDD superfamily, TSR3 family; Protein kinase s... \n",
"1008964 A0A0N4V212 TDD superfamily, TSR3 family; Protein kinase s... \n",
"1009019 A0A0N4XGU1 TDD superfamily, TSR3 family; Protein kinase s... \n",
"1837901 A0A1I8B1G5 TDD superfamily, TSR3 family; Protein kinase s... \n",
"5447097 A0A6V7USP8 TDD superfamily, TSR3 family; Protein kinase s... \n",
"\n",
" Binding site Active site \\\n",
"791321 275; 323; 346 None \n",
"1008964 131; 179; 202 None \n",
"1009019 73; 121; 178 None \n",
"1837901 40; 88; 111 None \n",
"5447097 61; 109; 132 None \n",
"\n",
" Sequence \\\n",
"791321 MFDVFSGHNDAVLCVQYRDQESLAVSGSADNSIKCWDTRTGRPEMT... \n",
"1008964 MVGYGVRARASGYHGRSKFRVKNKRKADKSYAENVSELAADSSRAI... \n",
"1009019 MGKKGREQHGNKRTNKSRHADAGDAEPLSSHGEEDSESLDESRDDH... \n",
"1837901 MASTDSSQSSDEDAKVEKAKKMPCILAMFDFGQCDPKRCSGRKLCR... \n",
"5447097 MLFMVVPVLIMMQVDVVAIKKMTNTDSSESSGDDAVDDKSKKMPCI... \n",
"\n",
" Binding-Active site \n",
"791321 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
"1008964 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
"1009019 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
"1837901 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
"5447097 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"test_df.head()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "bf55ec46-3685-41a3-a382-46273940ed79",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Entry | \n",
" Protein families | \n",
" Binding site | \n",
" Active site | \n",
" Sequence | \n",
" Binding-Active site | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" A0A009GI32 | \n",
" 3-hydroxyacyl-CoA dehydrogenase family; Enoyl-... | \n",
" 298; 326; 345; 402..404; 409; 431; 455; 502 | \n",
" 452 | \n",
" MIHAGNAITVQMLADGIAEFRFDLQGESVNKFNRATIEDFKAAIAA... | \n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... | \n",
"
\n",
" \n",
" 3 | \n",
" A0A009HWM5 | \n",
" 3-hydroxyacyl-CoA dehydrogenase family; Enoyl-... | \n",
" 298; 326; 345; 402..404; 409; 431; 455; 502 | \n",
" 452 | \n",
" MIHAGNAITVQMLADGIAEFRFDLQGESVNKFNRATIEDFKAAIAA... | \n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... | \n",
"
\n",
" \n",
" 4 | \n",
" A0A009I6Q1 | \n",
" 3-hydroxyacyl-CoA dehydrogenase family; Enoyl-... | \n",
" 298; 326; 345; 402..404; 409; 431; 455; 502 | \n",
" 452 | \n",
" MIHAGNAITVQMLSDGIAEFRFDLQGESVNKFNRATIEDFQAAIAA... | \n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... | \n",
"
\n",
" \n",
" 7 | \n",
" A0A009NCR4 | \n",
" 3-hydroxyacyl-CoA dehydrogenase family; Enoyl-... | \n",
" 298; 326; 345; 402..404; 409; 431; 455; 502 | \n",
" 452 | \n",
" MIHAGNAITVQMLSDGIAEFRFDLQGESVNKFNRATIEDFQAAIAA... | \n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... | \n",
"
\n",
" \n",
" 9 | \n",
" A0A009QK39 | \n",
" 3-hydroxyacyl-CoA dehydrogenase family; Enoyl-... | \n",
" 298; 326; 345; 402..404; 409; 431; 455; 502 | \n",
" 452 | \n",
" MIHAGNAITVQMLADGIAEFRFDLQGESVNKFNRATIEDFKAAIAA... | \n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Entry Protein families \\\n",
"1 A0A009GI32 3-hydroxyacyl-CoA dehydrogenase family; Enoyl-... \n",
"3 A0A009HWM5 3-hydroxyacyl-CoA dehydrogenase family; Enoyl-... \n",
"4 A0A009I6Q1 3-hydroxyacyl-CoA dehydrogenase family; Enoyl-... \n",
"7 A0A009NCR4 3-hydroxyacyl-CoA dehydrogenase family; Enoyl-... \n",
"9 A0A009QK39 3-hydroxyacyl-CoA dehydrogenase family; Enoyl-... \n",
"\n",
" Binding site Active site \\\n",
"1 298; 326; 345; 402..404; 409; 431; 455; 502 452 \n",
"3 298; 326; 345; 402..404; 409; 431; 455; 502 452 \n",
"4 298; 326; 345; 402..404; 409; 431; 455; 502 452 \n",
"7 298; 326; 345; 402..404; 409; 431; 455; 502 452 \n",
"9 298; 326; 345; 402..404; 409; 431; 455; 502 452 \n",
"\n",
" Sequence \\\n",
"1 MIHAGNAITVQMLADGIAEFRFDLQGESVNKFNRATIEDFKAAIAA... \n",
"3 MIHAGNAITVQMLADGIAEFRFDLQGESVNKFNRATIEDFKAAIAA... \n",
"4 MIHAGNAITVQMLSDGIAEFRFDLQGESVNKFNRATIEDFQAAIAA... \n",
"7 MIHAGNAITVQMLSDGIAEFRFDLQGESVNKFNRATIEDFQAAIAA... \n",
"9 MIHAGNAITVQMLADGIAEFRFDLQGESVNKFNRATIEDFKAAIAA... \n",
"\n",
" Binding-Active site \n",
"1 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
"3 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
"4 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
"7 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
"9 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train_df.head()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "1a997e94-2bea-4c56-89f2-f10737c96447",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"('065_data/test_labels_chunked_by_family.pkl',\n",
" '065_data/test_sequences_chunked_by_family.pkl',\n",
" '065_data/train_labels_chunked_by_family.pkl',\n",
" '065_data/train_sequences_chunked_by_family.pkl')"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pickle\n",
"import random\n",
"\n",
"def split_into_chunks(sequences, labels):\n",
" \"\"\"Split sequences and labels into chunks of size 1000 or less.\"\"\"\n",
" chunk_size = 1000\n",
" new_sequences = []\n",
" new_labels = []\n",
" \n",
" for seq, lbl in zip(sequences, labels):\n",
" if len(seq) > chunk_size:\n",
" # Split the sequence and labels into chunks of size 1000 or less\n",
" for i in range(0, len(seq), chunk_size):\n",
" new_sequences.append(seq[i:i+chunk_size])\n",
" new_labels.append(lbl[i:i+chunk_size])\n",
" else:\n",
" new_sequences.append(seq)\n",
" new_labels.append(lbl)\n",
" \n",
" return new_sequences, new_labels\n",
"\n",
"# Extract the necessary columns to create lists of sequences and labels\n",
"test_sequences_by_family = test_df['Sequence'].tolist()\n",
"test_labels_by_family = test_df['Binding-Active site'].tolist()\n",
"train_sequences_by_family = train_df['Sequence'].tolist()\n",
"train_labels_by_family = train_df['Binding-Active site'].tolist()\n",
"\n",
"# Get the number of samples in each dataset\n",
"num_test_samples = len(test_sequences_by_family)\n",
"num_train_samples = len(train_sequences_by_family)\n",
"\n",
"# Define the percentage of data you want to keep\n",
"percentage_to_keep = 100 # for keeping 6.00% of the data\n",
"\n",
"# Generate random indices representing a percentage of each dataset\n",
"random_test_indices = random.sample(range(num_test_samples), int(num_test_samples * (percentage_to_keep / 100)))\n",
"random_train_indices = random.sample(range(num_train_samples), int(num_train_samples * (percentage_to_keep / 100)))\n",
"\n",
"# Create smaller datasets using the random indices\n",
"test_sequences_small = [test_sequences_by_family[i] for i in random_test_indices]\n",
"test_labels_small = [test_labels_by_family[i] for i in random_test_indices]\n",
"train_sequences_small = [train_sequences_by_family[i] for i in random_train_indices]\n",
"train_labels_small = [train_labels_by_family[i] for i in random_train_indices]\n",
"\n",
"# Apply the function to create new datasets with chunks of size 1000 or less\n",
"test_sequences_chunked, test_labels_chunked = split_into_chunks(test_sequences_small, test_labels_small)\n",
"train_sequences_chunked, train_labels_chunked = split_into_chunks(train_sequences_small, train_labels_small)\n",
"\n",
"# Paths to save the new chunked pickle files\n",
"test_labels_chunked_path = '16M_data/test_labels_chunked_by_family.pkl'\n",
"test_sequences_chunked_path = '16M_data/test_sequences_chunked_by_family.pkl'\n",
"train_labels_chunked_path = '16M_data/train_labels_chunked_by_family.pkl'\n",
"train_sequences_chunked_path = '16M_data/train_sequences_chunked_by_family.pkl'\n",
"\n",
"# Save the chunked datasets as new pickle files\n",
"with open(test_labels_chunked_path, 'wb') as file:\n",
" pickle.dump(test_labels_chunked, file)\n",
"with open(test_sequences_chunked_path, 'wb') as file:\n",
" pickle.dump(test_sequences_chunked, file)\n",
"with open(train_labels_chunked_path, 'wb') as file:\n",
" pickle.dump(train_labels_chunked, file)\n",
"with open(train_sequences_chunked_path, 'wb') as file:\n",
" pickle.dump(train_sequences_chunked, file)\n",
"\n",
"test_labels_chunked_path, test_sequences_chunked_path, train_labels_chunked_path, train_sequences_chunked_path\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "6479ec75-c1a2-403c-8139-43e9754cc137",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(220620, 220620, 890637, 890637)"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Load each pickle file and get the number of entries in each\n",
"with open(test_labels_chunked_path, 'rb') as file:\n",
" test_labels_chunked = pickle.load(file)\n",
" num_test_labels_chunked = len(test_labels_chunked)\n",
"\n",
"with open(test_sequences_chunked_path, 'rb') as file:\n",
" test_sequences_chunked = pickle.load(file)\n",
" num_test_sequences_chunked = len(test_sequences_chunked)\n",
"\n",
"with open(train_labels_chunked_path, 'rb') as file:\n",
" train_labels_chunked = pickle.load(file)\n",
" num_train_labels_chunked = len(train_labels_chunked)\n",
"\n",
"with open(train_sequences_chunked_path, 'rb') as file:\n",
" train_sequences_chunked = pickle.load(file)\n",
" num_train_sequences_chunked = len(train_sequences_chunked)\n",
"\n",
"num_test_labels_chunked, num_test_sequences_chunked, num_train_labels_chunked, num_train_sequences_chunked\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "da7df429-62ab-4b8e-b3dd-7c5a9eb14921",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "esm2_binding_py38b",
"language": "python",
"name": "esm2_binding_py38b"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.17"
}
},
"nbformat": 4,
"nbformat_minor": 5
}