--- license: mit --- # ESM-2 for Post Translational Modification This is a LoRA finetuned version of `esm2_t12_35M_UR50D` for predicting post translational modification sites. ## Metrics ```python "eval_loss": 0.4661065936088562, "eval_accuracy": 0.9876599555715365, "eval_auc": 0.8673592596422711, "eval_precision": 0.14941997670219148, "eval_recall": 0.7463955099754822 "eval_f1": 0.24899413187145658, "eval_mcc": 0.3305508498121041, ``` ## Using the Model To use this model, run the following: ``` !pip install transformers -q !pip install peft -q ``` ```python from transformers import AutoModelForTokenClassification, AutoTokenizer from peft import PeftModel import torch # Path to the saved LoRA model model_path = "AmelieSchreiber/esm2_t12_35M_ptm_lora_2100K" # ESM2 base model base_model_path = "facebook/esm2_t12_35M_UR50D" # Load the model base_model = AutoModelForTokenClassification.from_pretrained(base_model_path) loaded_model = PeftModel.from_pretrained(base_model, model_path) # Ensure the model is in evaluation mode loaded_model.eval() # Load the tokenizer loaded_tokenizer = AutoTokenizer.from_pretrained(base_model_path) # Protein sequence for inference protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT" # Replace with your actual sequence # Tokenize the sequence inputs = loaded_tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length') # Run the model with torch.no_grad(): logits = loaded_model(**inputs).logits # Get predictions tokens = loaded_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens predictions = torch.argmax(logits, dim=2) # Define labels id2label = { 0: "No ptm site", 1: "ptm site" } # Print the predicted labels for each token for token, prediction in zip(tokens, predictions[0].numpy()): if token not in ['', '', '']: print((token, id2label[prediction])) ```