--- base_model: allenai/scibert_scivocab_uncased tags: - generated_from_trainer datasets: - scicite metrics: - accuracy model-index: - name: Scicite_classification_model results: - task: name: Text Classification type: text-classification dataset: name: scicite type: scicite config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8493449781659389 --- # Scicite_classification_model This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the scicite dataset. It achieves the following results on the evaluation set: - Loss: 1.2264 - Accuracy: 0.8493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3988 | 1.0 | 513 | 0.4386 | 0.8428 | | 0.2701 | 2.0 | 1026 | 0.5087 | 0.8504 | | 0.1789 | 3.0 | 1539 | 0.6278 | 0.8526 | | 0.1047 | 4.0 | 2052 | 0.8142 | 0.8548 | | 0.0653 | 5.0 | 2565 | 1.0136 | 0.8461 | | 0.0376 | 6.0 | 3078 | 1.1257 | 0.8417 | | 0.0237 | 7.0 | 3591 | 1.1632 | 0.8341 | | 0.0135 | 8.0 | 4104 | 1.2346 | 0.8493 | | 0.0124 | 9.0 | 4617 | 1.2027 | 0.8483 | | 0.0059 | 10.0 | 5130 | 1.2264 | 0.8493 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3