--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 tags: - axolotl - generated_from_trainer model-index: - name: 198e1d62-fda2-4d74-be93-83eff417e097 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b4b0197cb7a5a96f_train_data.json ds_type: json format: custom path: /workspace/input_data/b4b0197cb7a5a96f_train_data.json type: field_instruction: text field_output: entities format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/198e1d62-fda2-4d74-be93-83eff417e097 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 2520 micro_batch_size: 4 mlflow_experiment_name: /tmp/b4b0197cb7a5a96f_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.04 wandb_entity: null wandb_mode: online wandb_name: 1d6833e1-099e-4a04-b1d8-2c8975dd19ef wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1d6833e1-099e-4a04-b1d8-2c8975dd19ef warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 198e1d62-fda2-4d74-be93-83eff417e097 This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0239 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 2520 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6774 | 0.0006 | 1 | 0.7236 | | 0.0533 | 0.0558 | 100 | 0.0473 | | 0.0379 | 0.1117 | 200 | 0.0397 | | 0.0492 | 0.1675 | 300 | 0.0353 | | 0.0409 | 0.2233 | 400 | 0.0342 | | 0.0298 | 0.2792 | 500 | 0.0316 | | 0.0341 | 0.3350 | 600 | 0.0312 | | 0.0262 | 0.3908 | 700 | 0.0296 | | 0.0325 | 0.4467 | 800 | 0.0289 | | 0.0306 | 0.5025 | 900 | 0.0284 | | 0.0201 | 0.5583 | 1000 | 0.0275 | | 0.0268 | 0.6142 | 1100 | 0.0267 | | 0.0259 | 0.6700 | 1200 | 0.0270 | | 0.0232 | 0.7259 | 1300 | 0.0263 | | 0.0204 | 0.7817 | 1400 | 0.0255 | | 0.026 | 0.8375 | 1500 | 0.0253 | | 0.0242 | 0.8934 | 1600 | 0.0245 | | 0.0185 | 0.9492 | 1700 | 0.0247 | | 0.0267 | 1.0050 | 1800 | 0.0242 | | 0.0179 | 1.0609 | 1900 | 0.0243 | | 0.0203 | 1.1167 | 2000 | 0.0241 | | 0.0193 | 1.1725 | 2100 | 0.0240 | | 0.021 | 1.2284 | 2200 | 0.0239 | | 0.0159 | 1.2842 | 2300 | 0.0239 | | 0.0297 | 1.3400 | 2400 | 0.0239 | | 0.0239 | 1.3959 | 2500 | 0.0239 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1