---
library_name: peft
license: apache-2.0
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 198e1d62-fda2-4d74-be93-83eff417e097
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- b4b0197cb7a5a96f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b4b0197cb7a5a96f_train_data.json
type:
field_instruction: text
field_output: entities
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/198e1d62-fda2-4d74-be93-83eff417e097
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2520
micro_batch_size: 4
mlflow_experiment_name: /tmp/b4b0197cb7a5a96f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: 1d6833e1-099e-4a04-b1d8-2c8975dd19ef
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1d6833e1-099e-4a04-b1d8-2c8975dd19ef
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
# 198e1d62-fda2-4d74-be93-83eff417e097
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0239
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2520
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.6774 | 0.0006 | 1 | 0.7236 |
| 0.0533 | 0.0558 | 100 | 0.0473 |
| 0.0379 | 0.1117 | 200 | 0.0397 |
| 0.0492 | 0.1675 | 300 | 0.0353 |
| 0.0409 | 0.2233 | 400 | 0.0342 |
| 0.0298 | 0.2792 | 500 | 0.0316 |
| 0.0341 | 0.3350 | 600 | 0.0312 |
| 0.0262 | 0.3908 | 700 | 0.0296 |
| 0.0325 | 0.4467 | 800 | 0.0289 |
| 0.0306 | 0.5025 | 900 | 0.0284 |
| 0.0201 | 0.5583 | 1000 | 0.0275 |
| 0.0268 | 0.6142 | 1100 | 0.0267 |
| 0.0259 | 0.6700 | 1200 | 0.0270 |
| 0.0232 | 0.7259 | 1300 | 0.0263 |
| 0.0204 | 0.7817 | 1400 | 0.0255 |
| 0.026 | 0.8375 | 1500 | 0.0253 |
| 0.0242 | 0.8934 | 1600 | 0.0245 |
| 0.0185 | 0.9492 | 1700 | 0.0247 |
| 0.0267 | 1.0050 | 1800 | 0.0242 |
| 0.0179 | 1.0609 | 1900 | 0.0243 |
| 0.0203 | 1.1167 | 2000 | 0.0241 |
| 0.0193 | 1.1725 | 2100 | 0.0240 |
| 0.021 | 1.2284 | 2200 | 0.0239 |
| 0.0159 | 1.2842 | 2300 | 0.0239 |
| 0.0297 | 1.3400 | 2400 | 0.0239 |
| 0.0239 | 1.3959 | 2500 | 0.0239 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1