--- license: apache-2.0 tags: - text-to-image - safetensors - diffusers datasets: - JourneyDB/JourneyDB library_name: diffusers pipeline_tag: text-to-image --- # Lumina-Next-SFT The `Lumina-Next-SFT` is a Next-DiT model containing 2B parameters and utilizes [Gemma-2B](https://huggingface.co/google/gemma-2b) as the text encoder, enhanced through high-quality supervised fine-tuning (SFT). Our generative model has `Next-DiT` as the backbone, the text encoder is the `Gemma` 2B model, and the VAE uses a version of `sdxl` fine-tuned by stabilityai. - Generation Model: Next-DiT - Text Encoder: [Gemma-2B](https://huggingface.co/google/gemma-2b) - VAE: [stabilityai/sdxl-vae](https://huggingface.co/stabilityai/sdxl-vae) [![Lumina-Next](https://img.shields.io/badge/Paper-Lumina--Next-2b9348.svg?logo=arXiv)](https://github.com/Alpha-VLLM/Lumina-T2X/blob/main/assets/lumina-next.pdf) [Lumina-T2X paper](https://arxiv.org/abs/2405.05945) ![hero](https://github.com/Alpha-VLLM/Lumina-T2X/assets/54879512/9f52eabb-07dc-4881-8257-6d8a5f2a0a5a) ## 📰 News - [2024-06-21] 🎉🎉🎉 We have supported diffusers to load the `Lumina-Next-SFT` model. https://huggingface.co/Alpha-VLLM/Lumina-Next-SFT-diffusers - [2024-06-08] 🎉🎉🎉 We have released the `Lumina-Next-SFT` model. - [2024-05-28] We updated the `Lumina-Next-T2I` model to support 2K Resolution image generation. - [2024-05-16] We have converted the `.pth` weights to `.safetensors` weights. Please pull the latest code to use `demo.py` for inference. - [2024-05-12] We release the next version of `Lumina-T2I`, called `Lumina-Next-T2I` for faster and lower memory usage image generation model. ## 🎮 Model Zoo More checkpoints of our model will be released soon~ | Resolution | Next-DiT Parameter| Text Encoder | Prediction | Download URL | | ---------- | ----------------------- | ------------ | -----------|-------------- | | 1024 | 2B | [Gemma-2B](https://huggingface.co/google/gemma-2b) | Rectified Flow | [hugging face](https://huggingface.co/Alpha-VLLM/Lumina-Next-SFT) | ## Installation Before installation, ensure that you have a working ``nvcc`` ```bash # The command should work and show the same version number as in our case. (12.1 in our case). nvcc --version ``` On some outdated distros (e.g., CentOS 7), you may also want to check that a late enough version of ``gcc`` is available ```bash # The command should work and show a version of at least 6.0. # If not, consult distro-specific tutorials to obtain a newer version or build manually. gcc --version ``` Downloading Lumina-T2X repo from GitHub: ```bash git clone https://github.com/Alpha-VLLM/Lumina-T2X ``` ### 1. Create a conda environment and install PyTorch Note: You may want to adjust the CUDA version [according to your driver version](https://docs.nvidia.com/deploy/cuda-compatibility/#default-to-minor-version). ```bash conda create -n Lumina_T2X -y conda activate Lumina_T2X conda install python=3.11 pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia -y ``` ### 2. Install dependencies ```bash pip install diffusers fairscale accelerate tensorboard transformers gradio torchdiffeq click ``` or you can use ```bash cd lumina_next_t2i pip install -r requirements.txt ``` ### 3. Install ``flash-attn`` ```bash pip install flash-attn --no-build-isolation ``` ### 4. Install [nvidia apex](https://github.com/nvidia/apex) (optional) >[!Warning] > While Apex can improve efficiency, it is *not* a must to make Lumina-T2X work. > > Note that Lumina-T2X works smoothly with either: > + Apex not installed at all; OR > + Apex successfully installed with CUDA and C++ extensions. > > However, it will fail when: > + A Python-only build of Apex is installed. > > If the error `No module named 'fused_layer_norm_cuda'` appears, it typically means you are using a Python-only build of Apex. To resolve this, please run `pip uninstall apex`, and Lumina-T2X should then function correctly. You can clone the repo and install following the official guidelines (note that we expect a full build, i.e., with CUDA and C++ extensions) ```bash pip install ninja git clone https://github.com/NVIDIA/apex cd apex # if pip >= 23.1 (ref: https://pip.pypa.io/en/stable/news/#v23-1) which supports multiple `--config-settings` with the same key... pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" ./ # otherwise pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --global-option="--cpp_ext" --global-option="--cuda_ext" ./ ``` ## Inference To ensure that our generative model is ready to use right out of the box, we provide a user-friendly CLI program and a locally deployable Web Demo site. ### CLI 1. Install Lumina-Next-T2I ```bash pip install -e . ``` 2. Prepare the pre-trained model ⭐⭐ (Recommended) you can use huggingface_cli to download our model: ```bash huggingface-cli download --resume-download Alpha-VLLM/Lumina-Next-SFT --local-dir /path/to/ckpt ``` or using git for cloning the model you want to use: ```bash git clone https://huggingface.co/Alpha-VLLM/Lumina-Next-T2I ``` 1. Setting your personal inference configuration Update your own personal inference settings to generate different styles of images, checking `config/infer/config.yaml` for detailed settings. Detailed config structure: > `/path/to/ckpt` should be a directory containing `consolidated*.pth` and `model_args.pth` ```yaml - settings: model: ckpt: "" ckpt_lm: "" token: "" transport: path_type: "Linear" # option: ["Linear", "GVP", "VP"] prediction: "velocity" # option: ["velocity", "score", "noise"] loss_weight: "velocity" # option: [None, "velocity", "likelihood"] sample_eps: 0.1 train_eps: 0.2 ode: atol: 1e-6 # Absolute tolerance rtol: 1e-3 # Relative tolerance reverse: false # option: true or false likelihood: false # option: true or false infer: resolution: "1024x1024" # option: ["1024x1024", "512x2048", "2048x512", "(Extrapolation) 1664x1664", "(Extrapolation) 1024x2048", "(Extrapolation) 2048x1024"] num_sampling_steps: 60 # range: 1-1000 cfg_scale: 4. # range: 1-20 solver: "euler" # option: ["euler", "dopri5", "dopri8"] t_shift: 4 # range: 1-20 (int only) scaling_method: "Time-aware" # option: ["Time-aware", "None"] scale_watershed: 0.3 # range: 0.0-1.0 proportional_attn: true # option: true or false seed: 0 # rnage: any number ``` 1. Run with CLI inference command: ```bash lumina_next infer -c ``` e.g. Demo command: ```bash cd lumina_next_t2i lumina_next infer -c "config/infer/settings.yaml" "a snowman of ..." "./outputs" ``` ### Web Demo To host a local gradio demo for interactive inference, run the following command: ```bash # `/path/to/ckpt` should be a directory containing `consolidated*.pth` and `model_args.pth` # default python -u demo.py --ckpt "/path/to/ckpt" # the demo by default uses bf16 precision. to switch to fp32: python -u demo.py --ckpt "/path/to/ckpt" --precision fp32 # use ema model python -u demo.py --ckpt "/path/to/ckpt" --ema ```