--- license: apache-2.0 tags: - text-to-image - safetensors - diffusers datasets: - JourneyDB/JourneyDB library_name: diffusers pipeline_tag: text-to-image --- # Lumina-Next-SFT The `Lumina-Next-SFT` is a Next-DiT model containing 2B parameters and utilizes [Gemma-2B](https://huggingface.co/google/gemma-2b) as the text encoder, enhanced through high-quality supervised fine-tuning (SFT). Our generative model has `Next-DiT` as the backbone, the text encoder is the `Gemma` 2B model, and the VAE uses a version of `sdxl` fine-tuned by stabilityai. - Generation Model: Next-DiT - Text Encoder: [Gemma-2B](https://huggingface.co/google/gemma-2b) - VAE: [stabilityai/sdxl-vae](https://huggingface.co/stabilityai/sdxl-vae) [![Lumina-Next](https://img.shields.io/badge/Paper-Lumina--Next-2b9348.svg?logo=arXiv)](https://github.com/Alpha-VLLM/Lumina-T2X/blob/main/assets/lumina-next.pdf) [Lumina-T2X paper](https://arxiv.org/abs/2405.05945) ![hero](https://github.com/Alpha-VLLM/Lumina-T2X/assets/54879512/9f52eabb-07dc-4881-8257-6d8a5f2a0a5a) ## 📰 News - [2024-06-23] 🎉🎉🎉 We have supported diffusers to load the `Lumina-Next-SFT` model. https://huggingface.co/Alpha-VLLM/Lumina-Next-SFT-diffusers - [2024-06-08] 🎉🎉🎉 We have released the `Lumina-Next-SFT` model. - [2024-05-28] We updated the `Lumina-Next-T2I` model to support 2K Resolution image generation. - [2024-05-16] We have converted the `.pth` weights to `.safetensors` weights. Please pull the latest code to use `demo.py` for inference. - [2024-05-12] We release the next version of `Lumina-T2I`, called `Lumina-Next-T2I` for faster and lower memory usage image generation model. ## 🎮 Model Zoo More checkpoints of our model will be released soon~ | Resolution | Next-DiT Parameter| Text Encoder | Prediction | Download URL | | ---------- | ----------------------- | ------------ | -----------|-------------- | | 1024 | 2B | [Gemma-2B](https://huggingface.co/google/gemma-2b) | Rectified Flow | [hugging face](https://huggingface.co/Alpha-VLLM/Lumina-Next-SFT-diffusers) | ## Installation ### 1. Create a conda environment and install PyTorch Note: You may want to adjust the CUDA version [according to your driver version](https://docs.nvidia.com/deploy/cuda-compatibility/#default-to-minor-version). ```bash conda create -n Lumina_T2X -y conda activate Lumina_T2X conda install python=3.11 pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia -y ``` ### 2. Install dependencies ```bash pip install diffusers huggingface_hub ``` ### 3. Install ``flash-attn`` ```bash pip install flash-attn --no-build-isolation ``` ## Inference 1. Prepare the pre-trained model ⭐⭐ (Recommended) you can use huggingface_cli to download our model: ```bash huggingface-cli download --resume-download Alpha-VLLM/Lumina-Next-SFT-diffusers --local-dir /path/to/ckpt ``` 2. Run with demo code: ```python from diffusers import LuminaText2ImgPipeline import torch pipeline = LuminaText2ImgPipeline.from_pretrained("/path/to/ckpt/Lumina-Next-SFT-diffusers", torch_dtype=torch.bfloat16).to("cuda") # or you can download the model using code directly # pipeline = LuminaText2ImgPipeline.from_pretrained("Alpha-VLLM/Lumina-Next-SFT-diffusers", torch_dtype=torch.bfloat16).to("cuda") image = pipeline(prompt="Upper body of a young woman in a Victorian-era outfit with brass goggles and leather straps. " "Background shows an industrial revolution cityscape with smoky skies and tall, metal structures").images[0] ```