--- tags: - mteb - sentence-transformers - transformers - multilingual - sentence-similarity license: apache-2.0 --- ## gte-multilingual-base The **gte-multilingual-base** model is the latest in the [GTE](https://huggingface.co/collections/Alibaba-NLP/gte-models-6680f0b13f885cb431e6d469) (General Text Embedding) family of models, featuring several key attributes: - **High Performance**: Achieves state-of-the-art (SOTA) results in multilingual retrieval tasks and multi-task representation model evaluations when compared to models of similar size. - **Training Architecture**: Trained using an encoder-only transformers architecture, resulting in a smaller model size. Unlike previous models based on decode-only LLM architecture (e.g., gte-qwen2-1.5b-instruct), this model has lower hardware requirements for inference, offering a 10x increase in inference speed. - **Long Context**: Supports text lengths up to **8192** tokens. - **Multilingual Capability**: Supports over **70** languages. - **Elastic Dense Embedding**: Support elastic output dense representation while maintaining the effectiveness of downstream tasks, which significantly reduces storage costs and improves execution efficiency. - **Sparse Vectors**: In addition to dense representations, it can also generate sparse vectors. ## Model Information - Model Size: 304M - Embedding Dimension: 768 - Max Input Tokens: 8192 ## Requirements ``` transformers>=4.39.2 flash_attn>=2.5.6 ``` ## Usage Get Dense Embeddings with Transformers ``` # Requires transformers>=4.36.0 import torch.nn.functional as F from transformers import AutoModel, AutoTokenizer input_texts = [ "what is the capital of China?", "how to implement quick sort in python?", "北京", "快排算法介绍" ] model_path = 'Alibaba-NLP/gte-multilingual-base' tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModel.from_pretrained(model_path, trust_remote_code=True) # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=8192, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) dimension=768 # The output dimension of the output embedding, should be in [128, 768] embeddings = outputs.last_hidden_state[:, 0][:dimension] embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:1] @ embeddings[1:].T) * 100 print(scores.tolist()) ``` Use with sentence-transformers ``` from sentence_transformers import SentenceTransformer from sentence_transformers.util import cos_sim input_texts = [ "what is the capital of China?", "how to implement quick sort in python?", "北京", "快排算法介绍" ] model = SentenceTransformer('Alibaba-NLP/gte-multilingual-base', trust_remote_code=True) embeddings = model.encode(input_texts) ``` Use with custom code to get dense embeddigns and sparse token weights ``` # You can find the gte_embeddings.py in https://huggingface.co/Alibaba-NLP/gte-multilingual-base/blob/main/scripts/gte_embedding.py from gte_embeddings import GTEEmbeddidng model_path = 'Alibaba-NLP/gte-multilingual-base' model = GTEEmbeddidng(model_path) query = "中国的首都在哪儿" docs = [ "what is the capital of China?", "how to implement quick sort in python?", "北京", "快排算法介绍" ] embs = model.encode(docs, return_dense=True,return_sparse=True) print('dense_embeddings vecs', embs['dense_embeddings']) print('token_weights', embs['token_weights']) pairs = [(query, doc) for doc in docs] dense_scores = model.compute_scores(pairs, dense_weight=1.0, sparse_weight=0.0) sparse_scores = model.compute_scores(pairs, dense_weight=0.0, sparse_weight=1.0) hybird_scores = model.compute_scores(pairs, dense_weight=1.0, sparse_weight=0.3) print('dense_scores', dense_scores) print('sparse_scores', sparse_scores) print('hybird_scores', hybird_scores) ```