import os import re import math import json import argparse import warnings import traceback from tqdm import tqdm import torch from torch.utils.data import Dataset, DataLoader import sys sys.path.append('./') from videollama2 import model_init, mm_infer from videollama2.utils import disable_torch_init def split_list(lst, n): """Split a list into n (roughly) equal-sized chunks""" chunk_size = math.ceil(len(lst) / n) # integer division return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] def get_chunk(lst, n, k): chunks = split_list(lst, n) return chunks[k] class PerceptionTestMCQADataset(Dataset): video_formats = ['.mp4', '.avi', '.mov', '.mkv'] def __init__(self, data_list, processor): self.data_list = data_list self.processor = processor def __len__(self): return len(self.data_list) def __getitem__(self, idx): line = self.data_list[idx] video_name = line['metadata']['video_id'] mc_questions = line['mc_question'] for fmt in self.video_formats: # Added this line temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}") if os.path.exists(temp_path): video_path = temp_path break video_tensor = self.processor(video_path) instructs = [] qids = [] ops = [] for q in mc_questions: question = q['question'] qid = q['id'] options = q['options'] instruct = f'Question: {question}\nOptions:\n(A) {options[0]}\n(B) {options[1]}\n(C) {options[2]}\nAnswer with the option\'s letter from the given choices directly and only give the best option.' instructs.append(instruct) qids.append(qid) ops.append(options) return { 'video': video_tensor, 'video_id': video_name, 'instructs': instructs, 'question_ids': qids, 'options': ops, } def collate_fn(batch): vid = [x['video'] for x in batch] v_id = [x['video_id'] for x in batch] ins = [x['instructs'] for x in batch] q_ids = [x['question_ids'] for x in batch] ops = [x['options'] for x in batch] vid = torch.stack(vid, dim=0) return vid, v_id, ins, q_ids, ops def run_inference(args): disable_torch_init() model, processor, tokenizer = model_init(args.model_path) questions = json.load(open(args.question_file, "r")) questions = list(questions.values()) questions = get_chunk(questions, args.num_chunks, args.chunk_idx) assert args.batch_size == 1, "Batch size must be 1 for inference" dataset = PerceptionTestMCQADataset(questions, processor['video']) dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn) answer_file = os.path.expanduser(args.answer_file) os.makedirs(os.path.dirname(answer_file), exist_ok=True) ans_file = open(answer_file, "w") # Iterate over each sample in the ground truth file for i, (video_tensor, video_id, instructs, question_ids, options) in enumerate(tqdm(dataloader)): # reduce batch dimension video_tensor = video_tensor[0] video_id = video_id[0] instructs = instructs[0] question_ids = question_ids[0] options = options[0] qas = [] for idx, instruct in enumerate(instructs): letters = ['(A)', '(B)', '(C)'] question_id = question_ids[idx] _options = options[idx] output = mm_infer( video_tensor, instruct, model=model, tokenizer=tokenizer, modal='video', do_sample=False, ) output = output.replace('answer', '') output = output.replace('Answer', '') pred_answer = re.findall('\(*[A-C]\)*', output) try: assert len(pred_answer) >= 1, 'The video \"{}\" instruct: \n\"{}\"\n output: \n\"{}\"\n is not in the expected format'.format(video_id, instruct, output) pred_answer = pred_answer[0].strip() # if not pred_answer.startswith('('): pred_answer = pred_answer.strip('()') pred_answer = f'({pred_answer})' pred_idx = letters.index(pred_answer) except: traceback.print_exc() tmp_options = [x.lower() for x in _options] if output.lower() in tmp_options: tmp_options = [x.lower() for x in _options] pred_idx = tmp_options.index(output.lower()) else: pred_idx = 2 qas.append({'id': question_id, 'answer_id': pred_idx, 'answer': _options[pred_idx]}) ans_file.write('\"{}\": {},\n'.format(video_id, json.dumps(qas))) ans_file.close() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--model-path', help='', required=True) parser.add_argument('--video-folder', help='Directory containing video files.', required=True) parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True) parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True) parser.add_argument("--num-chunks", type=int, default=1) parser.add_argument("--chunk-idx", type=int, default=0) parser.add_argument("--device", type=str, required=False, default='cuda:0') parser.add_argument("--model_max_length", type=int, required=False, default=2048) parser.add_argument("--batch-size", type=int, required=False, default=1) parser.add_argument("--num-workers", type=int, required=False, default=8) args = parser.parse_args() run_inference(args)