import math import os import argparse import json import warnings from tqdm import tqdm from torch.utils.data import Dataset, DataLoader import sys sys.path.append('./') from videollama2 import model_init, mm_infer from videollama2.utils import disable_torch_init # NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560) warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') def split_list(lst, n): """Split a list into n (roughly) equal-sized chunks""" chunk_size = math.ceil(len(lst) / n) # integer division return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] def get_chunk(lst, n, k): chunks = split_list(lst, n) return chunks[k] class MSVCDataset(Dataset): video_formats = ['.mp4', '.webm', '.avi', '.mov', '.mkv'] def __init__(self, folder, questions, processor): self.folder = folder self.questions = questions self.processor = processor def __len__(self): return len(self.questions) def __getitem__(self, idx): sample = self.questions[idx] video_name = sample['video_path'] question = sample['question'] answer = sample['captions'] video_path = os.path.join(self.folder, video_name) video_tensor = self.processor(video_path) return { 'video': video_tensor, 'video_name': video_name, 'question': question, 'answer': answer, } def collate_fn(batch): vid = [x['video'] for x in batch] v_id = [x['video_name'] for x in batch] qus = [x['question'] for x in batch] ans = [x['answer'] for x in batch] return vid, v_id, qus, ans def run_inference(args): disable_torch_init() model, processor, tokenizer = model_init(args.model_path) gt_questions = json.load(open(args.question_file, "r")) gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx) answer_file = os.path.join(args.output_file) os.makedirs(os.path.dirname(args.output_file), exist_ok=True) ans_file = open(answer_file, "w") assert args.batch_size == 1, "Batch size must be 1 for inference" dataset = MSVCDataset(args.video_folder, gt_questions, processor['video']) dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn) # Iterate over each sample in the ground truth file for idx, (video_tensors, video_names, questions, answers) in enumerate(tqdm(dataloader)): video_tensor = video_tensors[0] video_name = video_names[0] question = questions[0] answer = answers[0] output = mm_infer( video_tensor, question, model=model, tokenizer=tokenizer, modal='video', do_sample=False, ) sample_set = {'video_name': video_name, 'question': question, 'answer': answer, 'pred': output} ans_file.write(json.dumps(sample_set) + "\n") ans_file.close() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--model-path', help='', required=True) parser.add_argument('--video-folder', help='Directory containing video files.', required=True) parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True) parser.add_argument('--output-file', help='Directory to save the model results JSON.', required=True) parser.add_argument("--num-chunks", type=int, default=1) parser.add_argument("--chunk-idx", type=int, default=0) parser.add_argument("--device", type=str, required=False, default='cuda:0') parser.add_argument("--batch-size", type=int, required=False, default=1) parser.add_argument("--num-workers", type=int, required=False, default=8) args = parser.parse_args() run_inference(args)