Evaluation Pipeline: - Just change new_data to be your inputs and new_labels to be your outputs - The evaluation pipeline will print out the accuracy for that input data as well as the output for each individual input ``` ################################ INPUT NEW DATA ################################ new_data = ["Breaking news headline 1", "Another headline about politics"] new_labels = [1, 0] ################################ INPUT NEW DATA ################################ import torch import torch.nn as nn from transformers import BertTokenizer, BertModel from huggingface_hub import PyTorchModelHubMixin # Custom PyTorch Model class CustomBERTModel(nn.Module, PyTorchModelHubMixin): def __init__(self, pretrained_model_name, num_labels, dropout_rate=0.1): super(CustomBERTModel, self).__init__() self.bert = BertModel.from_pretrained(pretrained_model_name) self.dropout = nn.Dropout(dropout_rate) self.fc1 = nn.Linear(self.bert.config.hidden_size, 128) self.fc2 = nn.Linear(128, num_labels) def forward(self, input_ids, attention_mask, labels=None): outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask) pooled_output = outputs.pooler_output x = self.dropout(pooled_output) x = torch.relu(self.fc1(x)) x = self.dropout(x) logits = self.fc2(x) loss = None if labels is not None: loss_fct = nn.CrossEntropyLoss() loss = loss_fct(logits, labels) return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits} model = CustomBERTModel.from_pretrained("Akiva-Josh/akivajoshBERT") tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") inputs = tokenizer(new_data, truncation=True, padding="max_length", max_length=40, return_tensors="pt") model.eval() with torch.no_grad(): outputs = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"]) logits = outputs["logits"] predictions = torch.argmax(logits, dim=-1) actual_labels = torch.tensor(new_labels) correct = (predictions == actual_labels).sum().item() accuracy = correct / len(actual_labels) print(f"Accuracy: {accuracy * 100:.2f}%") label_map_reverse = {1: "NBC", 0: "FoxNews"} predicted_labels = [label_map_reverse[p.item()] for p in predictions] print(predicted_labels) ```