AjayD53 commited on
Commit
a240c83
1 Parent(s): 38a774a

Learn RL Hugging Face Week 1

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 276.24 +/- 22.55
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f468f3cb940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f468f3cb9d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f468f3cba60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f468f3cbaf0>", "_build": "<function ActorCriticPolicy._build at 0x7f468f3cbb80>", "forward": "<function ActorCriticPolicy.forward at 0x7f468f3cbc10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f468f3cbca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f468f3cbd30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f468f3cbdc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f468f3cbe50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f468f3cbee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f468f3cbf70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f468f448900>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678161299880624799, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOc9b2+/qs/NikIv6JI0b4C5K69vkdivgAAAAAAAAAA0/hFPvaaJrzlHE27lLoiOVUfm71Dj3o6AACAPwAAgD/mJXw9Pd09u66O4rsDyzI9d1hrvArYFD4AAIA/AACAP+qXgj79GnI+cKy5vaNBn77IFjs9rd/aPAAAAAAAAAAAc2/6PVJw8bmeH425xwyiNMDIkDohGKM4AACAPwAAgD8mmik+wYyQvPBb0blUr+A3r4EFvhg2DjkAAIA/AACAPzPXij0C0aA/Y8YOPj8/Kr+fK7g9l4TAOgAAAAAAAAAADTDFPYQBRz6CxQy97E6jvrjb1bvfVzA8AAAAAAAAAACmEW8+sFD4PhVonr0LFeO+12VqPRQqLr0AAAAAAAAAAK2MHT4c8WC8IxehOsEA1Lg6Lta9cEPhuQAAgD8AAIA/etcjPvaPN7xDQta6pKjwOOYZpr2PxAk6AACAPwAAgD+z3lU9JOWyPXb0tT3qCYm+QL4xPcCOgDwAAAAAAAAAAOCmCz75gJI/Q7rnPi32G7+2/Rg+fySBPQAAAAAAAAAAM6e+u9phsz923xa/WhnYvpIk3Tsfswg+AAAAAAAAAACa+lO+d4VMP3KhOTxQDNK+IRwevsJ0Az4AAAAAAAAAAD0+VL4WU24/zrtnvpH0G7+fc3G+vmyePQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIP+YDAl3BckCUhpRSlIwBbJRL5YwBdJRHQJj071wo9cN1fZQoaAZoCWgPQwhv8lt0MsNxQJSGlFKUaBVLyWgWR0CY9gHpr1ujdX2UKGgGaAloD0MIHhoWo263cUCUhpRSlGgVTQ4BaBZHQJj2++g13t91fZQoaAZoCWgPQwhD5PT1/O9xQJSGlFKUaBVNBwFoFkdAmPf/+KjzqnV9lChoBmgJaA9DCLjoZKl1KnNAlIaUUpRoFUv9aBZHQJj473h4t6J1fZQoaAZoCWgPQwhWRbjJKHZuQJSGlFKUaBVNIgFoFkdAmPo+6VdHD3V9lChoBmgJaA9DCGzM64iDZHBAlIaUUpRoFUvLaBZHQJj7UjgQ6IZ1fZQoaAZoCWgPQwhyFva0Q7BzQJSGlFKUaBVLx2gWR0CY+2PCl7+ldX2UKGgGaAloD0MIOe6UDlYicUCUhpRSlGgVS7toFkdAmPuF9F4LTnV9lChoBmgJaA9DCBtK7UW0ZnFAlIaUUpRoFUu6aBZHQJj8Ab6xgRd1fZQoaAZoCWgPQwgtliL5CgtxQJSGlFKUaBVLvGgWR0CY/BUD+zdDdX2UKGgGaAloD0MIIhyz7Al1cECUhpRSlGgVS+9oFkdAmPwnzMA3k3V9lChoBmgJaA9DCMajVMITQXBAlIaUUpRoFUv5aBZHQJj8kNAkcCJ1fZQoaAZoCWgPQwhNnx1w3Q9yQJSGlFKUaBVNJwFoFkdAmP1aQNkOJHV9lChoBmgJaA9DCOuM74sLtnJAlIaUUpRoFUvdaBZHQJj9mb+cYqJ1fZQoaAZoCWgPQwjoFroSAYhzQJSGlFKUaBVLwGgWR0CY/gohIOH4dX2UKGgGaAloD0MI+n3/5oXscECUhpRSlGgVS/5oFkdAmP8iS/0ulHV9lChoBmgJaA9DCC3MQjvnU3JAlIaUUpRoFUviaBZHQJj/oJfICEJ1fZQoaAZoCWgPQwiy2vy/6hdxQJSGlFKUaBVL0WgWR0CZAA8cMmWudX2UKGgGaAloD0MIcF6c+OrzbkCUhpRSlGgVS9toFkdAmQFVirksBnV9lChoBmgJaA9DCB6Jl6fzInBAlIaUUpRoFUvGaBZHQJkBjP5YYBN1fZQoaAZoCWgPQwhOJ9nq8hZyQJSGlFKUaBVLzmgWR0CZAaQqI7/5dX2UKGgGaAloD0MIMNl4sEWmcUCUhpRSlGgVS+poFkdAmQHYS6DoQnV9lChoBmgJaA9DCJvKorALqnFAlIaUUpRoFUvAaBZHQJkDA7eVLSN1fZQoaAZoCWgPQwi7KHrgo21yQJSGlFKUaBVL8GgWR0CZAz4Vh1DCdX2UKGgGaAloD0MIObTIdr6hcUCUhpRSlGgVTRgBaBZHQJkDRiw0O3F1fZQoaAZoCWgPQwgUzJiCNblyQJSGlFKUaBVL8mgWR0CZBCy3kPtldX2UKGgGaAloD0MI28AdqFPtckCUhpRSlGgVS/loFkdAmQU42bXpW3V9lChoBmgJaA9DCKn4vyPqkHBAlIaUUpRoFUvJaBZHQJkFeRfWtlt1fZQoaAZoCWgPQwhubeF5af5xQJSGlFKUaBVNUQFoFkdAmQWRAB1cMXV9lChoBmgJaA9DCB/axwr+QGNAlIaUUpRoFU3oA2gWR0CZBifbblBAdX2UKGgGaAloD0MIGTkLe1owb0CUhpRSlGgVS9loFkdAmQZjZtelbnV9lChoBmgJaA9DCMKE0axsH3RAlIaUUpRoFUu7aBZHQJkGwDuBtk51fZQoaAZoCWgPQwiF7LyNTQxyQJSGlFKUaBVNCwFoFkdAmQbPG+9Jz3V9lChoBmgJaA9DCJUO1v+5oHBAlIaUUpRoFUu7aBZHQJkG7ZQHiWF1fZQoaAZoCWgPQwhQGf8+I3hxQJSGlFKUaBVLx2gWR0CZB0lDF6zFdX2UKGgGaAloD0MIIvq19dNpckCUhpRSlGgVS9poFkdAmQftqQA+6nV9lChoBmgJaA9DCAuW6gLeYXBAlIaUUpRoFUvQaBZHQJkItppN9IB1fZQoaAZoCWgPQwjVy+80GbluQJSGlFKUaBVL1GgWR0CZCQjzZpSKdX2UKGgGaAloD0MIJEbPLfTJc0CUhpRSlGgVS/poFkdAmQoCqp97W3V9lChoBmgJaA9DCKtZZ3xfUnBAlIaUUpRoFUvcaBZHQJkKFK28Zk11fZQoaAZoCWgPQwgKhnMNc+5wQJSGlFKUaBVLzmgWR0CZCpz7MxGldX2UKGgGaAloD0MITb7Z5sYpb0CUhpRSlGgVS8xoFkdAmQreM6zVt3V9lChoBmgJaA9DCCsU6X7OJW5AlIaUUpRoFUvkaBZHQJkMIzKs+3Z1fZQoaAZoCWgPQwhRaFn3z19xQJSGlFKUaBVNBQFoFkdAmQxqyGBWgnV9lChoBmgJaA9DCLEXCtiO12FAlIaUUpRoFU3oA2gWR0CZDJeEZiuudX2UKGgGaAloD0MIqOLGLebvcECUhpRSlGgVS+toFkdAmQyXY6GQCHV9lChoBmgJaA9DCH1cGypGvXFAlIaUUpRoFUu2aBZHQJkM0JRfnfV1fZQoaAZoCWgPQwiU9ZuJKYxxQJSGlFKUaBVL3WgWR0CZDRoePq9odX2UKGgGaAloD0MIUvNV8jFnckCUhpRSlGgVS/NoFkdAmQ0q1G9YfXV9lChoBmgJaA9DCDAOLh2ztHFAlIaUUpRoFU0AAWgWR0CZDWe4TbnHdX2UKGgGaAloD0MI3Qw34LMEc0CUhpRSlGgVTSYBaBZHQJkOdqFh5Pd1fZQoaAZoCWgPQwjY9KCglKRyQJSGlFKUaBVL8mgWR0CZDvPTodMkdX2UKGgGaAloD0MIU3sRbQejckCUhpRSlGgVS/9oFkdAmQ+ok3S8anV9lChoBmgJaA9DCIhjXdwG2nJAlIaUUpRoFUvqaBZHQJkQEc5sCT51fZQoaAZoCWgPQwgfveE+sq1wQJSGlFKUaBVL7GgWR0CZEC+EytV8dX2UKGgGaAloD0MI++k/a37/ZECUhpRSlGgVTegDaBZHQJkQqQ0XP7h1fZQoaAZoCWgPQwiYF2AfHStyQJSGlFKUaBVLxGgWR0CZEXH9FWn1dX2UKGgGaAloD0MIx2KbVHSkcUCUhpRSlGgVS7doFkdAmRGyL/CIlHV9lChoBmgJaA9DCNzVq8ioxHFAlIaUUpRoFUvkaBZHQJkR6R6nivR1fZQoaAZoCWgPQwj18dB3N3pwQJSGlFKUaBVL3GgWR0CZEfSteUpvdX2UKGgGaAloD0MIn1c89Ug1b0CUhpRSlGgVS+BoFkdAmRI88s+V1XV9lChoBmgJaA9DCMTPfw8eAnFAlIaUUpRoFU0nAWgWR0CZEkdX1anrdX2UKGgGaAloD0MIck2BzA59cECUhpRSlGgVS91oFkdAmRJmXsw+MnV9lChoBmgJaA9DCIo/ijozSHFAlIaUUpRoFU04AWgWR0CZEtw9aEBbdX2UKGgGaAloD0MI3NrC8xK+cUCUhpRSlGgVS9loFkdAmRLev2Xb/XV9lChoBmgJaA9DCCKI83CC43JAlIaUUpRoFUv7aBZHQJkTVshxHXp1fZQoaAZoCWgPQwjRPlbwW1ZyQJSGlFKUaBVLymgWR0CZE37W/ag3dX2UKGgGaAloD0MILgQ5KKFbcUCUhpRSlGgVS7FoFkdAmRQ7tJFspHV9lChoBmgJaA9DCLAcIQM5XHBAlIaUUpRoFUuzaBZHQJkUYPjGT9t1fZQoaAZoCWgPQwjZCS/BqRBtQJSGlFKUaBVL02gWR0CZFJ/+bVjJdX2UKGgGaAloD0MIo3N+iqPxcUCUhpRSlGgVS/9oFkdAmRUCRnvlVHV9lChoBmgJaA9DCIP26uMhN29AlIaUUpRoFUvJaBZHQJkVQBuGbkR1fZQoaAZoCWgPQwjDKt7IfIpwQJSGlFKUaBVL1WgWR0CZFkNjbzshdX2UKGgGaAloD0MI5/up8VIXbkCUhpRSlGgVS9xoFkdAmRaqRlpXZHV9lChoBmgJaA9DCDp0et6NIXJAlIaUUpRoFUvjaBZHQJkXagL7XQN1fZQoaAZoCWgPQwiNXg1Q2ihwQJSGlFKUaBVL0mgWR0CZF6i1iONpdX2UKGgGaAloD0MIJemayXeOc0CUhpRSlGgVS+9oFkdAmRezeKsMiXV9lChoBmgJaA9DCPOS/8kfNHBAlIaUUpRoFU0AAWgWR0CZF95nUUfxdX2UKGgGaAloD0MI/rrTnSdJc0CUhpRSlGgVS/doFkdAmRiT59E1EXV9lChoBmgJaA9DCDscXaU7Mm9AlIaUUpRoFUvgaBZHQJkYwcMmWt51fZQoaAZoCWgPQwi77q1IzD9wQJSGlFKUaBVL4GgWR0CZGfB+WnjydX2UKGgGaAloD0MIyXISSt8UcUCUhpRSlGgVS8JoFkdAmRnvi97F9HV9lChoBmgJaA9DCCLDKt4IB3NAlIaUUpRoFUviaBZHQJkaT51vETB1fZQoaAZoCWgPQwhVppiDYIFxQJSGlFKUaBVNjgFoFkdAmRvEO/cnE3V9lChoBmgJaA9DCJLrppRXdW5AlIaUUpRoFUvJaBZHQJkbxNUOuq51fZQoaAZoCWgPQwiCAu/k001vQJSGlFKUaBVL2mgWR0CZHL1mJ3xGdX2UKGgGaAloD0MIlbn5RrRkcUCUhpRSlGgVTR0BaBZHQJkdBjtoi9t1fZQoaAZoCWgPQwhyxFp8ijhxQJSGlFKUaBVL+GgWR0CZHpaY/mkndX2UKGgGaAloD0MIc7hWe9imckCUhpRSlGgVTRMBaBZHQJkf87bL2Yh1fZQoaAZoCWgPQwgB++jUFd1vQJSGlFKUaBVL12gWR0CZIQJNCZ4OdX2UKGgGaAloD0MIC+vGuyOnckCUhpRSlGgVTQgBaBZHQJkhP5M10kp1fZQoaAZoCWgPQwiYpDLFnORvQJSGlFKUaBVNMwFoFkdAmSE/4yoGZHV9lChoBmgJaA9DCIBEEyhib3JAlIaUUpRoFUv2aBZHQJkiRQP7N0N1fZQoaAZoCWgPQwgRHJdxE5txQJSGlFKUaBVL+mgWR0CZIzbor4FidX2UKGgGaAloD0MIz2VqEjxOb0CUhpRSlGgVS+doFkdAmSSgpnYg73V9lChoBmgJaA9DCPyNdtzwbW9AlIaUUpRoFU06AmgWR0CZJNKoAGSqdX2UKGgGaAloD0MIFw0Zj5KmcUCUhpRSlGgVS/toFkdAmSWJCngpB3V9lChoBmgJaA9DCAYtJGC0rnFAlIaUUpRoFUvkaBZHQJkl9OgxrSF1fZQoaAZoCWgPQwiXkA969ulxQJSGlFKUaBVL7mgWR0CZJs/xDst1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
lunar_lander_rl.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e57f9222c7a4f68308364f27850364bf39d2ea456137179135e5d63e70cc1c2b
3
+ size 147321
lunar_lander_rl/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
lunar_lander_rl/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f468f3cb940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f468f3cb9d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f468f3cba60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f468f3cbaf0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f468f3cbb80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f468f3cbc10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f468f3cbca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f468f3cbd30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f468f3cbdc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f468f3cbe50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f468f3cbee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f468f3cbf70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f468f448900>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000.0,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678161299880624799,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOc9b2+/qs/NikIv6JI0b4C5K69vkdivgAAAAAAAAAA0/hFPvaaJrzlHE27lLoiOVUfm71Dj3o6AACAPwAAgD/mJXw9Pd09u66O4rsDyzI9d1hrvArYFD4AAIA/AACAP+qXgj79GnI+cKy5vaNBn77IFjs9rd/aPAAAAAAAAAAAc2/6PVJw8bmeH425xwyiNMDIkDohGKM4AACAPwAAgD8mmik+wYyQvPBb0blUr+A3r4EFvhg2DjkAAIA/AACAPzPXij0C0aA/Y8YOPj8/Kr+fK7g9l4TAOgAAAAAAAAAADTDFPYQBRz6CxQy97E6jvrjb1bvfVzA8AAAAAAAAAACmEW8+sFD4PhVonr0LFeO+12VqPRQqLr0AAAAAAAAAAK2MHT4c8WC8IxehOsEA1Lg6Lta9cEPhuQAAgD8AAIA/etcjPvaPN7xDQta6pKjwOOYZpr2PxAk6AACAPwAAgD+z3lU9JOWyPXb0tT3qCYm+QL4xPcCOgDwAAAAAAAAAAOCmCz75gJI/Q7rnPi32G7+2/Rg+fySBPQAAAAAAAAAAM6e+u9phsz923xa/WhnYvpIk3Tsfswg+AAAAAAAAAACa+lO+d4VMP3KhOTxQDNK+IRwevsJ0Az4AAAAAAAAAAD0+VL4WU24/zrtnvpH0G7+fc3G+vmyePQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVMxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIP+YDAl3BckCUhpRSlIwBbJRL5YwBdJRHQJj071wo9cN1fZQoaAZoCWgPQwhv8lt0MsNxQJSGlFKUaBVLyWgWR0CY9gHpr1ujdX2UKGgGaAloD0MIHhoWo263cUCUhpRSlGgVTQ4BaBZHQJj2++g13t91fZQoaAZoCWgPQwhD5PT1/O9xQJSGlFKUaBVNBwFoFkdAmPf/+KjzqnV9lChoBmgJaA9DCLjoZKl1KnNAlIaUUpRoFUv9aBZHQJj473h4t6J1fZQoaAZoCWgPQwhWRbjJKHZuQJSGlFKUaBVNIgFoFkdAmPo+6VdHD3V9lChoBmgJaA9DCGzM64iDZHBAlIaUUpRoFUvLaBZHQJj7UjgQ6IZ1fZQoaAZoCWgPQwhyFva0Q7BzQJSGlFKUaBVLx2gWR0CY+2PCl7+ldX2UKGgGaAloD0MIOe6UDlYicUCUhpRSlGgVS7toFkdAmPuF9F4LTnV9lChoBmgJaA9DCBtK7UW0ZnFAlIaUUpRoFUu6aBZHQJj8Ab6xgRd1fZQoaAZoCWgPQwgtliL5CgtxQJSGlFKUaBVLvGgWR0CY/BUD+zdDdX2UKGgGaAloD0MIIhyz7Al1cECUhpRSlGgVS+9oFkdAmPwnzMA3k3V9lChoBmgJaA9DCMajVMITQXBAlIaUUpRoFUv5aBZHQJj8kNAkcCJ1fZQoaAZoCWgPQwhNnx1w3Q9yQJSGlFKUaBVNJwFoFkdAmP1aQNkOJHV9lChoBmgJaA9DCOuM74sLtnJAlIaUUpRoFUvdaBZHQJj9mb+cYqJ1fZQoaAZoCWgPQwjoFroSAYhzQJSGlFKUaBVLwGgWR0CY/gohIOH4dX2UKGgGaAloD0MI+n3/5oXscECUhpRSlGgVS/5oFkdAmP8iS/0ulHV9lChoBmgJaA9DCC3MQjvnU3JAlIaUUpRoFUviaBZHQJj/oJfICEJ1fZQoaAZoCWgPQwiy2vy/6hdxQJSGlFKUaBVL0WgWR0CZAA8cMmWudX2UKGgGaAloD0MIcF6c+OrzbkCUhpRSlGgVS9toFkdAmQFVirksBnV9lChoBmgJaA9DCB6Jl6fzInBAlIaUUpRoFUvGaBZHQJkBjP5YYBN1fZQoaAZoCWgPQwhOJ9nq8hZyQJSGlFKUaBVLzmgWR0CZAaQqI7/5dX2UKGgGaAloD0MIMNl4sEWmcUCUhpRSlGgVS+poFkdAmQHYS6DoQnV9lChoBmgJaA9DCJvKorALqnFAlIaUUpRoFUvAaBZHQJkDA7eVLSN1fZQoaAZoCWgPQwi7KHrgo21yQJSGlFKUaBVL8GgWR0CZAz4Vh1DCdX2UKGgGaAloD0MIObTIdr6hcUCUhpRSlGgVTRgBaBZHQJkDRiw0O3F1fZQoaAZoCWgPQwgUzJiCNblyQJSGlFKUaBVL8mgWR0CZBCy3kPtldX2UKGgGaAloD0MI28AdqFPtckCUhpRSlGgVS/loFkdAmQU42bXpW3V9lChoBmgJaA9DCKn4vyPqkHBAlIaUUpRoFUvJaBZHQJkFeRfWtlt1fZQoaAZoCWgPQwhubeF5af5xQJSGlFKUaBVNUQFoFkdAmQWRAB1cMXV9lChoBmgJaA9DCB/axwr+QGNAlIaUUpRoFU3oA2gWR0CZBifbblBAdX2UKGgGaAloD0MIGTkLe1owb0CUhpRSlGgVS9loFkdAmQZjZtelbnV9lChoBmgJaA9DCMKE0axsH3RAlIaUUpRoFUu7aBZHQJkGwDuBtk51fZQoaAZoCWgPQwiF7LyNTQxyQJSGlFKUaBVNCwFoFkdAmQbPG+9Jz3V9lChoBmgJaA9DCJUO1v+5oHBAlIaUUpRoFUu7aBZHQJkG7ZQHiWF1fZQoaAZoCWgPQwhQGf8+I3hxQJSGlFKUaBVLx2gWR0CZB0lDF6zFdX2UKGgGaAloD0MIIvq19dNpckCUhpRSlGgVS9poFkdAmQftqQA+6nV9lChoBmgJaA9DCAuW6gLeYXBAlIaUUpRoFUvQaBZHQJkItppN9IB1fZQoaAZoCWgPQwjVy+80GbluQJSGlFKUaBVL1GgWR0CZCQjzZpSKdX2UKGgGaAloD0MIJEbPLfTJc0CUhpRSlGgVS/poFkdAmQoCqp97W3V9lChoBmgJaA9DCKtZZ3xfUnBAlIaUUpRoFUvcaBZHQJkKFK28Zk11fZQoaAZoCWgPQwgKhnMNc+5wQJSGlFKUaBVLzmgWR0CZCpz7MxGldX2UKGgGaAloD0MITb7Z5sYpb0CUhpRSlGgVS8xoFkdAmQreM6zVt3V9lChoBmgJaA9DCCsU6X7OJW5AlIaUUpRoFUvkaBZHQJkMIzKs+3Z1fZQoaAZoCWgPQwhRaFn3z19xQJSGlFKUaBVNBQFoFkdAmQxqyGBWgnV9lChoBmgJaA9DCLEXCtiO12FAlIaUUpRoFU3oA2gWR0CZDJeEZiuudX2UKGgGaAloD0MIqOLGLebvcECUhpRSlGgVS+toFkdAmQyXY6GQCHV9lChoBmgJaA9DCH1cGypGvXFAlIaUUpRoFUu2aBZHQJkM0JRfnfV1fZQoaAZoCWgPQwiU9ZuJKYxxQJSGlFKUaBVL3WgWR0CZDRoePq9odX2UKGgGaAloD0MIUvNV8jFnckCUhpRSlGgVS/NoFkdAmQ0q1G9YfXV9lChoBmgJaA9DCDAOLh2ztHFAlIaUUpRoFU0AAWgWR0CZDWe4TbnHdX2UKGgGaAloD0MI3Qw34LMEc0CUhpRSlGgVTSYBaBZHQJkOdqFh5Pd1fZQoaAZoCWgPQwjY9KCglKRyQJSGlFKUaBVL8mgWR0CZDvPTodMkdX2UKGgGaAloD0MIU3sRbQejckCUhpRSlGgVS/9oFkdAmQ+ok3S8anV9lChoBmgJaA9DCIhjXdwG2nJAlIaUUpRoFUvqaBZHQJkQEc5sCT51fZQoaAZoCWgPQwgfveE+sq1wQJSGlFKUaBVL7GgWR0CZEC+EytV8dX2UKGgGaAloD0MI++k/a37/ZECUhpRSlGgVTegDaBZHQJkQqQ0XP7h1fZQoaAZoCWgPQwiYF2AfHStyQJSGlFKUaBVLxGgWR0CZEXH9FWn1dX2UKGgGaAloD0MIx2KbVHSkcUCUhpRSlGgVS7doFkdAmRGyL/CIlHV9lChoBmgJaA9DCNzVq8ioxHFAlIaUUpRoFUvkaBZHQJkR6R6nivR1fZQoaAZoCWgPQwj18dB3N3pwQJSGlFKUaBVL3GgWR0CZEfSteUpvdX2UKGgGaAloD0MIn1c89Ug1b0CUhpRSlGgVS+BoFkdAmRI88s+V1XV9lChoBmgJaA9DCMTPfw8eAnFAlIaUUpRoFU0nAWgWR0CZEkdX1anrdX2UKGgGaAloD0MIck2BzA59cECUhpRSlGgVS91oFkdAmRJmXsw+MnV9lChoBmgJaA9DCIo/ijozSHFAlIaUUpRoFU04AWgWR0CZEtw9aEBbdX2UKGgGaAloD0MI3NrC8xK+cUCUhpRSlGgVS9loFkdAmRLev2Xb/XV9lChoBmgJaA9DCCKI83CC43JAlIaUUpRoFUv7aBZHQJkTVshxHXp1fZQoaAZoCWgPQwjRPlbwW1ZyQJSGlFKUaBVLymgWR0CZE37W/ag3dX2UKGgGaAloD0MILgQ5KKFbcUCUhpRSlGgVS7FoFkdAmRQ7tJFspHV9lChoBmgJaA9DCLAcIQM5XHBAlIaUUpRoFUuzaBZHQJkUYPjGT9t1fZQoaAZoCWgPQwjZCS/BqRBtQJSGlFKUaBVL02gWR0CZFJ/+bVjJdX2UKGgGaAloD0MIo3N+iqPxcUCUhpRSlGgVS/9oFkdAmRUCRnvlVHV9lChoBmgJaA9DCIP26uMhN29AlIaUUpRoFUvJaBZHQJkVQBuGbkR1fZQoaAZoCWgPQwjDKt7IfIpwQJSGlFKUaBVL1WgWR0CZFkNjbzshdX2UKGgGaAloD0MI5/up8VIXbkCUhpRSlGgVS9xoFkdAmRaqRlpXZHV9lChoBmgJaA9DCDp0et6NIXJAlIaUUpRoFUvjaBZHQJkXagL7XQN1fZQoaAZoCWgPQwiNXg1Q2ihwQJSGlFKUaBVL0mgWR0CZF6i1iONpdX2UKGgGaAloD0MIJemayXeOc0CUhpRSlGgVS+9oFkdAmRezeKsMiXV9lChoBmgJaA9DCPOS/8kfNHBAlIaUUpRoFU0AAWgWR0CZF95nUUfxdX2UKGgGaAloD0MI/rrTnSdJc0CUhpRSlGgVS/doFkdAmRiT59E1EXV9lChoBmgJaA9DCDscXaU7Mm9AlIaUUpRoFUvgaBZHQJkYwcMmWt51fZQoaAZoCWgPQwi77q1IzD9wQJSGlFKUaBVL4GgWR0CZGfB+WnjydX2UKGgGaAloD0MIyXISSt8UcUCUhpRSlGgVS8JoFkdAmRnvi97F9HV9lChoBmgJaA9DCCLDKt4IB3NAlIaUUpRoFUviaBZHQJkaT51vETB1fZQoaAZoCWgPQwhVppiDYIFxQJSGlFKUaBVNjgFoFkdAmRvEO/cnE3V9lChoBmgJaA9DCJLrppRXdW5AlIaUUpRoFUvJaBZHQJkbxNUOuq51fZQoaAZoCWgPQwiCAu/k001vQJSGlFKUaBVL2mgWR0CZHL1mJ3xGdX2UKGgGaAloD0MIlbn5RrRkcUCUhpRSlGgVTR0BaBZHQJkdBjtoi9t1fZQoaAZoCWgPQwhyxFp8ijhxQJSGlFKUaBVL+GgWR0CZHpaY/mkndX2UKGgGaAloD0MIc7hWe9imckCUhpRSlGgVTRMBaBZHQJkf87bL2Yh1fZQoaAZoCWgPQwgB++jUFd1vQJSGlFKUaBVL12gWR0CZIQJNCZ4OdX2UKGgGaAloD0MIC+vGuyOnckCUhpRSlGgVTQgBaBZHQJkhP5M10kp1fZQoaAZoCWgPQwiYpDLFnORvQJSGlFKUaBVNMwFoFkdAmSE/4yoGZHV9lChoBmgJaA9DCIBEEyhib3JAlIaUUpRoFUv2aBZHQJkiRQP7N0N1fZQoaAZoCWgPQwgRHJdxE5txQJSGlFKUaBVL+mgWR0CZIzbor4FidX2UKGgGaAloD0MIz2VqEjxOb0CUhpRSlGgVS+doFkdAmSSgpnYg73V9lChoBmgJaA9DCPyNdtzwbW9AlIaUUpRoFU06AmgWR0CZJNKoAGSqdX2UKGgGaAloD0MIFw0Zj5KmcUCUhpRSlGgVS/toFkdAmSWJCngpB3V9lChoBmgJaA9DCAYtJGC0rnFAlIaUUpRoFUvkaBZHQJkl9OgxrSF1fZQoaAZoCWgPQwiXkA969ulxQJSGlFKUaBVL7mgWR0CZJs/xDst1dWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 310,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
lunar_lander_rl/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfb253496091a9c0a585b99e3103ba2ded1300b7279fef182d58f9358bb180a4
3
+ size 87929
lunar_lander_rl/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0eb52ba670b458b6d483fab0bfc7251d370c39d5709cc5961ab6dbd891517cfb
3
+ size 43393
lunar_lander_rl/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_lander_rl/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (233 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 276.23555675724435, "std_reward": 22.54627463401482, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-07T04:22:41.972547"}