--- library_name: transformers license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - axolotl - generated_from_trainer datasets: - json model-index: - name: UFOs-Finetune-V1 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: mistralai/Mistral-7B-v0.1 # optionally might have model_type or tokenizer_type model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer # Automatically upload checkpoint and final model to HF hub_model_id: AiAF/UFOs-Finetune-V1 load_in_8bit: false load_in_4bit: false strict: false datasets: - path: json data_files: plain_qa_list.jsonl ds_type: json type: chat_template chat_template: chatml field_messages: conversations message_field_role: from message_field_content: value roles: user: - human assistant: - gpt system: - system dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/UFOs-Finetune-V1/out sequence_len: 8192 sample_packing: true pad_to_sequence_len: true eval_sample_packing: false max_steps: 100000 wandb_project: "UFO_LLM_Finetune" wandb_entity: wandb_watch: "all" wandb_name: "UFO_LLM_Finetune-V1" wandb_log_model: "false" gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 10 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000005 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: /workspace/axolotl/outputs/out/checkpoint-18 local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# UFOs-Finetune-V1 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the json dataset. It achieves the following results on the evaluation set: - Loss: 1.3935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7686 | 0.1111 | 1 | 1.6895 | | 2.0582 | 0.3333 | 3 | 1.6884 | | 1.9135 | 0.6667 | 6 | 1.6793 | | 1.8261 | 1.0 | 9 | 1.6667 | | 1.8757 | 1.3333 | 12 | 1.6570 | | 1.8754 | 1.6667 | 15 | 1.6501 | | 1.8426 | 2.0 | 18 | 1.6468 | | 2.8515 | 4.1739 | 21 | 1.4353 | | 1.3702 | 4.6957 | 24 | 1.4068 | | 1.2889 | 5.1739 | 27 | 1.3909 | | 1.2635 | 5.6957 | 30 | 1.3870 | | 1.2139 | 6.1739 | 33 | 1.3874 | | 1.1786 | 6.6957 | 36 | 1.3895 | | 1.1458 | 7.1739 | 39 | 1.3921 | | 1.1389 | 7.6957 | 42 | 1.3929 | | 1.1255 | 8.1739 | 45 | 1.3934 | | 1.1589 | 8.6957 | 48 | 1.3935 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0