--- tags: - Code-Generation - autotrain - text-generation - Llama2 - Pytorch - PEFT - QLoRA - code - coding pipeline_tag: text-generation widget: - text: 'Write a program that add five numbers' - text: 'Write a python code for reading multiple images' - text: 'Write a python code for the name Ahmed to be in a reversed order' --- # LlaMa2-CodeGen This model is **LlaMa-2 7b** [Llama-2](https://huggingface.co/meta-llama/Llama-2-7b) fine-tuned on the **CodeSearchNet dataset** [CodeSearchNet](https://github.com/github/CodeSearchNet) by using the method **QLoRA** [QLoRA](https://github.com/artidoro/qlora) with [PEFT](https://github.com/huggingface/peft) library. # Model Trained on Google Colab Pro Using AutoTrain, PEFT and QLoRA ### Example ```py import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig peft_model_id = "AhmedSSoliman/Llama2-CodeGen-PEFT-QLoRA" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, trust_remote_code=True, return_dict=True, load_in_4bit=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) def create_prompt(instruction): system = "You are a coding assistant that will help the user to resolve the following instruction:" instruction = "\n### Input: " + instruction return system + "\n" + instruction + "\n\n" + "### Response:" + "\n" def generate( instruction, max_new_tokens=128, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, **kwargs, ): prompt = create_prompt(instruction) print(prompt) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to("cuda") attention_mask = inputs["attention_mask"].to("cuda") generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, attention_mask=attention_mask, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, early_stopping=True ) s = generation_output.sequences[0] output = tokenizer.decode(s) return output.split("### Response:")[1].lstrip("\n") instruction = """ Write a python code for the name Ahmed to be in a reversed order """ print(generate(instruction)) ```