File size: 2,373 Bytes
948c4cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d44be
 
948c4cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d44be
948c4cb
 
 
 
 
 
87d44be
 
 
 
 
 
 
 
 
 
 
 
 
 
948c4cb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---

license: mit
base_model: w11wo/indonesian-roberta-base-sentiment-classifier
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: train-reward-training
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# train-reward-training

This model is a fine-tuned version of [w11wo/indonesian-roberta-base-sentiment-classifier](https://huggingface.co/w11wo/indonesian-roberta-base-sentiment-classifier) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3383
- Accuracy: 0.8673

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05

- train_batch_size: 4

- eval_batch_size: 8

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 8
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.711         | 0.54  | 50   | 0.6858          | 0.8061   |
| 0.6942        | 1.08  | 100  | 0.6390          | 0.8469   |
| 0.586         | 1.61  | 150  | 0.4498          | 0.8673   |
| 0.4693        | 2.15  | 200  | 0.3464          | 0.8571   |
| 0.3404        | 2.69  | 250  | 0.3004          | 0.8673   |
| 0.3255        | 3.23  | 300  | 0.3514          | 0.8776   |
| 0.2332        | 3.76  | 350  | 0.3435          | 0.8776   |
| 0.1865        | 4.3   | 400  | 0.3013          | 0.8673   |
| 0.1552        | 4.84  | 450  | 0.2979          | 0.8878   |
| 0.1214        | 5.38  | 500  | 0.3166          | 0.8878   |
| 0.1284        | 5.91  | 550  | 0.3407          | 0.8673   |
| 0.0971        | 6.45  | 600  | 0.3490          | 0.8776   |
| 0.0953        | 6.99  | 650  | 0.3269          | 0.8673   |
| 0.0728        | 7.53  | 700  | 0.3388          | 0.8673   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.15.2