Duplicate from Salesforce/GTA1-32B
Browse filesCo-authored-by: Yan Yang <HelloKKMe@users.noreply.huggingface.co>
- .gitattributes +35 -0
- README.md +777 -0
- config.bak.json +69 -0
- config.json +51 -0
- configuration_opencua.py +37 -0
- generation_config.json +4 -0
- merges.txt +0 -0
- model-00001-of-00014.safetensors +3 -0
- model-00002-of-00014.safetensors +3 -0
- model-00003-of-00014.safetensors +3 -0
- model-00004-of-00014.safetensors +3 -0
- model-00005-of-00014.safetensors +3 -0
- model-00006-of-00014.safetensors +3 -0
- model-00007-of-00014.safetensors +3 -0
- model-00008-of-00014.safetensors +3 -0
- model-00009-of-00014.safetensors +3 -0
- model-00010-of-00014.safetensors +3 -0
- model-00011-of-00014.safetensors +3 -0
- model-00012-of-00014.safetensors +3 -0
- model-00013-of-00014.safetensors +3 -0
- model-00014-of-00014.safetensors +3 -0
- model.args.pt +3 -0
- model.safetensors.index.json +1168 -0
- modeling_opencua.py +449 -0
- preprocessor_config.json +18 -0
- processing_opencua.py +93 -0
- processor_config.json +4 -0
- qwen.tiktoken +0 -0
- tiktoken.model +3 -0
- tokenization_opencua.py +379 -0
- tokenizer_config.json +58 -0
- vocab.json +0 -0
.gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,777 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: mit
|
| 5 |
+
metrics:
|
| 6 |
+
- accuracy
|
| 7 |
+
pipeline_tag: image-text-to-text
|
| 8 |
+
tags:
|
| 9 |
+
- VLM
|
| 10 |
+
- Computer-Use-Agent
|
| 11 |
+
- OS-Agent
|
| 12 |
+
- GUI
|
| 13 |
+
- Grounding
|
| 14 |
+
library_name: transformers
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# Introduction
|
| 18 |
+
|
| 19 |
+
Reinforcement learning (RL) (e.g., GRPO) helps with grounding because of its inherent objective alignment—rewarding successful clicks—rather than encouraging long textual Chain-of-Thought (CoT) reasoning. Unlike approaches that rely heavily on verbose CoT reasoning, GRPO directly incentivizes actionable and grounded responses. Based on findings from our [blog](https://huggingface.co/blog/HelloKKMe/grounding-r1), we share state-of-the-art GUI grounding models trained using GRPO.
|
| 20 |
+
|
| 21 |
+
# Grounding Performance
|
| 22 |
+
|
| 23 |
+
We follow the standard evaluation protocol and benchmark our model on three challenging datasets. Our method consistently achieves the best results among all open-source model families. Below are the comparative results:
|
| 24 |
+
|
| 25 |
+
| **Model** | **Size** | **Open Source** | **ScreenSpot-V2** | **ScreenSpotPro** | **OSWORLD-G** | **OSWORLD-G-Refined** |
|
| 26 |
+
|-------------------|:--------:|:---------------:|:-----------------:|:-----------------:|:-----------------:|:-----------------:|
|
| 27 |
+
| OpenAI CUA | — | ❌ | 87.9 | 23.4 | — | — |
|
| 28 |
+
| Claude 3.7 | — | ❌ | 87.6 | 27.7 | — | — |
|
| 29 |
+
| JEDI-7B | 7B | ✅ | 91.7 | 39.5 | 54.1 | — |
|
| 30 |
+
| SE-GUI | 7B | ✅ | 90.3 | 47.0 | — | — |
|
| 31 |
+
| UI-TARS | 7B | ✅ | 91.6 | 35.7 | 47.5 | — |
|
| 32 |
+
| UI-TARS-1.5* | 7B | ✅ | 89.7* | 42.0* | 52.8* | 64.2* |
|
| 33 |
+
| UGround-v1-7B | 7B | ✅ | — | 31.1 | — | 36.4 |
|
| 34 |
+
| Qwen2.5-VL-32B-Instruct | 32B | ✅ | 91.9* | 48.0 | 46.5 | 59.6* |
|
| 35 |
+
| UGround-v1-72B | 72B | ✅ | — | 34.5 | — | — |
|
| 36 |
+
| Qwen2.5-VL-72B-Instruct | 72B | ✅ | 94.00* | 53.3 | — | 62.2* |
|
| 37 |
+
| UI-TARS | 72B | ✅ | 90.3 | 38.1 | — | — |
|
| 38 |
+
| OpenCUA | 7B | ✅ | 92.3 | 50.0 | 55.3 | 68.3* |
|
| 39 |
+
| OpenCUA | 32B | ✅ | 93.4 | 55.3 | 59.6 | 70.2* |
|
| 40 |
+
| GTA1-2507 (Ours) | 7B | ✅ | 92.4 <sub>*(∆ +2.7)*</sub> | 50.1<sub>*(∆ +8.1)*</sub> | 55.1 <sub>*(∆ +2.3)*</sub> | 67.7 <sub>*(∆ +3.5)*</sub> |
|
| 41 |
+
| GTA1 (Ours) | 7B | ✅ | 93.4 <sub>*(∆ +0.1)*</sub> | 55.5<sub>*(∆ +5.5)*</sub> | 60.1<sub>*(∆ +4.8)*</sub> | 68.8<sub>*(∆ +0.5)*</sub> |
|
| 42 |
+
| GTA1 (Ours) | 32B | ✅ | 95.2 <sub>*(∆ +1.8)*</sub> | 63.6<sub>*(∆ +8.3)*</sub> | 65.2 <sub>*(∆ +5.6)*</sub> | 72.2<sub>*(∆ +2.0)*</sub> |
|
| 43 |
+
|
| 44 |
+
> **Note:**
|
| 45 |
+
> - Model size is indicated in billions (B) of parameters.
|
| 46 |
+
> - A dash (—) denotes results that are currently unavailable.
|
| 47 |
+
> - A superscript asterisk (﹡) denotes our evaluated result.
|
| 48 |
+
> - UI-TARS-1.5 7B, OpenCUA-7B, and OpenCUA-32B are applied as our baseline models.
|
| 49 |
+
> - ∆ indicates the performance improvement (∆) of our model compared to its baseline.
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# Agent Performance
|
| 53 |
+
|
| 54 |
+
## OSWorld and OSWorld-Verified Benchmarks
|
| 55 |
+
|
| 56 |
+
We evaluate our models on the OSWorld and OSWorld-Verified benchmarks following the standard evaluation protocol. The results demonstrate strong performance across both datasets.
|
| 57 |
+
|
| 58 |
+
| **Agent Model** | **Step** | **OSWorld** | **OSWorld-Verified** |
|
| 59 |
+
|-----------------|:--------:|:-----------:|:-------------------:|
|
| 60 |
+
| **Proprietary Models** |
|
| 61 |
+
| Claude 3.7 Sonnet | 100 | 28.0 | — |
|
| 62 |
+
| OpenAI CUA 4o | 200 | 38.1 | — |
|
| 63 |
+
| UI-TARS-1.5 | 100 | 42.5 | 41.8 |
|
| 64 |
+
| OpenAI CUA o3 | 200 | 42.9 | — |
|
| 65 |
+
| **Open-Source Models** |
|
| 66 |
+
| Aria-UI w/ GPT-4o | 15 | 15.2 | — |
|
| 67 |
+
| Aguvis-72B w/ GPT-4o | 15 | 17.0 | — |
|
| 68 |
+
| UI-TARS-72B-SFT | 50 | 18.8 | — |
|
| 69 |
+
| Agent S w/ Claude-3.5-Sonnet | 15 | 20.5 | — |
|
| 70 |
+
| Agent S w/ GPT-4o | 15 | 20.6 | — |
|
| 71 |
+
| UI-TARS-72B-DPO | 15 | 22.7 | — |
|
| 72 |
+
| UI-TARS-72B-DPO | 50 | 24.6 | — |
|
| 73 |
+
| UI-TARS-1.5-7B | 100 | 26.9 | 27.4 |
|
| 74 |
+
| Jedi-7B w/ o3 | 100 | — | 51.0 |
|
| 75 |
+
| Jedi-7B w/ GPT-4o | 100 | 27.0 | �� |
|
| 76 |
+
| Agent S2 w/ Claude-3.7-Sonnet | 50 | 34.5 | — |
|
| 77 |
+
| Agent S2 w/ Gemini-2.5-Pro | 50 | 41.4 | 45.8 |
|
| 78 |
+
| Agent S2.5 w/ o3 | 100 | — | 56.0 |
|
| 79 |
+
| Agent S2.5 w/ GPT-5 | 100 | — | 58.4 |
|
| 80 |
+
| CoAct-1 w/o3 & o4mini & OpenAI CUA 4o | 150 | — | 60.8 |
|
| 81 |
+
| GTA1-7B-2507 w/ o3 | 100 | 45.2 | 53.1 |
|
| 82 |
+
| GTA1-7B-2507 w/ GPT-5 | 100 | — | 61.0 |
|
| 83 |
+
| GTA1-32B w/ o3 | 100 | — | 55.4 |
|
| 84 |
+
| GTA1-32B w/ GPT-5 | 100 | — | 63.4 |
|
| 85 |
+
|
| 86 |
+
> **Note:** A dash (—) indicates unavailable results.
|
| 87 |
+
|
| 88 |
+
## WindowsAgentArena Benchmark
|
| 89 |
+
|
| 90 |
+
We also evaluate our models on the WindowsAgentArena benchmark, demonstrating strong performance in Windows-specific GUI automation tasks.
|
| 91 |
+
|
| 92 |
+
| **Agent Model** | **Step** | **Success Rate** |
|
| 93 |
+
|-----------------|:--------:|:---------------:|
|
| 94 |
+
| Kimi-VL | 15 | 10.4 |
|
| 95 |
+
| WAA | — | 19.5 |
|
| 96 |
+
| Jedi w/ GPT-4o | 100 | 33.7 |
|
| 97 |
+
| GTA1-7B-2507 w/ o3 | 100 | 47.9 |
|
| 98 |
+
| GTA1-7B-2507 w/ GPT-5 | 100 | 49.2 |
|
| 99 |
+
| GTA1-32B w/ o3 | 100 | 51.2 |
|
| 100 |
+
| GTA1-32B w/ GPT-5 | 100 | 50.6 |
|
| 101 |
+
|
| 102 |
+
> **Note:** A dash (—) indicates unavailable results.
|
| 103 |
+
|
| 104 |
+
# Inference
|
| 105 |
+
Below is a code snippet demonstrating how to run inference using a trained model.
|
| 106 |
+
|
| 107 |
+
```python
|
| 108 |
+
from transformers import AutoTokenizer, AutoImageProcessor
|
| 109 |
+
from transformers.models.qwen2_vl.image_processing_qwen2_vl_fast import smart_resize
|
| 110 |
+
from PIL import Image
|
| 111 |
+
from io import BytesIO
|
| 112 |
+
import base64
|
| 113 |
+
import re
|
| 114 |
+
from vllm import LLM, SamplingParams
|
| 115 |
+
|
| 116 |
+
instruction="click start"
|
| 117 |
+
image_path="example.png"
|
| 118 |
+
|
| 119 |
+
CLICK_REGEXES = [
|
| 120 |
+
# pyautogui.click(x=123, y=456)
|
| 121 |
+
re.compile(r"click\s*\(\s*x\s*=\s*(\d+)\s*,\s*y\s*=\s*(\d+)\s*\)", re.IGNORECASE),
|
| 122 |
+
# pyautogui.click(123, 456) or click(123,456)
|
| 123 |
+
re.compile(r"click\s*\(\s*(\d+)\s*,\s*(\d+)\s*\)", re.IGNORECASE),
|
| 124 |
+
]
|
| 125 |
+
|
| 126 |
+
def format_message(image_path,instruction):
|
| 127 |
+
SYSTEM_PROMPT = (
|
| 128 |
+
"You are a GUI agent. You are given a task and a screenshot of the screen. "
|
| 129 |
+
"You need to perform a series of pyautogui actions to complete the task."
|
| 130 |
+
)
|
| 131 |
+
messages = [
|
| 132 |
+
{"role": "system", "content": SYSTEM_PROMPT},
|
| 133 |
+
{"role": "user", "content": [
|
| 134 |
+
{"type": "image", "image": image_path},
|
| 135 |
+
{"type": "text", "text": instruction},
|
| 136 |
+
]},
|
| 137 |
+
]
|
| 138 |
+
text = prompt_tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 139 |
+
|
| 140 |
+
text2, n = re.subn(
|
| 141 |
+
r"<\|media_begin\|>.*?<\|media_end\|>",
|
| 142 |
+
"<|vision_start|><|image_pad|><|vision_end|>",
|
| 143 |
+
text,
|
| 144 |
+
flags=re.S
|
| 145 |
+
)
|
| 146 |
+
if n == 0:
|
| 147 |
+
raise RuntimeError("Cannot find <|media_begin|>...<|media_end|> token.")
|
| 148 |
+
return text2
|
| 149 |
+
|
| 150 |
+
def parse_xy_from_text(text: str):
|
| 151 |
+
if "click" not in text.lower():
|
| 152 |
+
return [-1, -1]
|
| 153 |
+
for rx in CLICK_REGEXES:
|
| 154 |
+
m = rx.search(text)
|
| 155 |
+
if m:
|
| 156 |
+
try:
|
| 157 |
+
return int(m.group(1)), int(m.group(2))
|
| 158 |
+
except Exception:
|
| 159 |
+
continue
|
| 160 |
+
return [-1,-1]
|
| 161 |
+
|
| 162 |
+
def convert_pil_image_to_base64(image):
|
| 163 |
+
buffered = BytesIO()
|
| 164 |
+
image.save(buffered, format="PNG")
|
| 165 |
+
return base64.b64encode(buffered.getvalue()).decode()
|
| 166 |
+
|
| 167 |
+
llm = LLM(
|
| 168 |
+
model="Salesforce/GTA1-32B",
|
| 169 |
+
tokenizer="Salesforce/GTA1-32B",
|
| 170 |
+
tokenizer_mode="slow",
|
| 171 |
+
trust_remote_code=True,
|
| 172 |
+
dtype="bfloat16",
|
| 173 |
+
limit_mm_per_prompt={"image": 1},
|
| 174 |
+
tensor_parallel_size=1,
|
| 175 |
+
)
|
| 176 |
+
prompt_tok = AutoTokenizer.from_pretrained("Salesforce/GTA1-32B", trust_remote_code=True)
|
| 177 |
+
sp = SamplingParams(max_tokens=512, temperature=0.0)
|
| 178 |
+
tokenizer = llm.get_tokenizer()
|
| 179 |
+
processor=AutoImageProcessor.from_pretrained("Salesforce/GTA1-32B", trust_remote_code=True)
|
| 180 |
+
|
| 181 |
+
image = Image.open(image_path).convert('RGB')
|
| 182 |
+
resized_height, resized_width = smart_resize(
|
| 183 |
+
image.height,
|
| 184 |
+
image.width,
|
| 185 |
+
factor=processor.patch_size * processor.merge_size,
|
| 186 |
+
min_pixels=processor.min_pixels,
|
| 187 |
+
max_pixels=processor.max_pixels,
|
| 188 |
+
)
|
| 189 |
+
resized_image = image.resize((resized_width, resized_height))
|
| 190 |
+
messages = format_message(image_path, instruction)
|
| 191 |
+
response = llm.generate(
|
| 192 |
+
[{"prompt": messages, "multi_modal_data": {"image": [resized_image]}}],
|
| 193 |
+
sampling_params=sp
|
| 194 |
+
)[0].outputs[0].text
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
coordinates = parse_xy_from_text(response)
|
| 198 |
+
print(coordinates[0]/resized_width*image.width, coordinates[1]/resized_height*image.height)
|
| 199 |
+
```
|
| 200 |
+
|
| 201 |
+
# Model Serving
|
| 202 |
+
|
| 203 |
+
Below is an example script for serving the model.
|
| 204 |
+
```python
|
| 205 |
+
import torch
|
| 206 |
+
import os
|
| 207 |
+
# -------------------------
|
| 208 |
+
# System / Torch defaults
|
| 209 |
+
# -------------------------
|
| 210 |
+
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false") # avoid CPU oversubscription
|
| 211 |
+
os.environ.setdefault("VLLM_USE_V1", "1")
|
| 212 |
+
os.environ.setdefault("VLLM_ENGINE_IN_BACKGROUND_THREAD", "0")
|
| 213 |
+
import base64
|
| 214 |
+
import re
|
| 215 |
+
from typing import Dict, List, Union
|
| 216 |
+
from PIL import Image
|
| 217 |
+
from io import BytesIO
|
| 218 |
+
import traceback
|
| 219 |
+
import argparse
|
| 220 |
+
import asyncio
|
| 221 |
+
import requests
|
| 222 |
+
import ray
|
| 223 |
+
from ray import serve
|
| 224 |
+
from fastapi import FastAPI
|
| 225 |
+
from transformers import AutoTokenizer
|
| 226 |
+
from vllm import LLM, SamplingParams
|
| 227 |
+
import uuid
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
N_REPLICAS = 2
|
| 231 |
+
|
| 232 |
+
try:
|
| 233 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 234 |
+
torch.backends.cudnn.benchmark = True
|
| 235 |
+
except Exception:
|
| 236 |
+
pass
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
# -------------------------
|
| 240 |
+
# IO helpers
|
| 241 |
+
# -------------------------
|
| 242 |
+
|
| 243 |
+
def pil_to_base64(img: Image.Image, format: str = "PNG") -> str:
|
| 244 |
+
buffer = BytesIO()
|
| 245 |
+
img.save(buffer, format=format)
|
| 246 |
+
img_bytes = buffer.getvalue()
|
| 247 |
+
img_b64 = base64.b64encode(img_bytes).decode("utf-8")
|
| 248 |
+
return img_b64
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def data_uri_to_pil(data_uri: str) -> Image.Image:
|
| 252 |
+
header, b64_str = data_uri.split(",", 1)
|
| 253 |
+
img_data = base64.b64decode(b64_str)
|
| 254 |
+
buffer = BytesIO(img_data)
|
| 255 |
+
img = Image.open(buffer)
|
| 256 |
+
return img
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def extract_images(messages: List[Dict]) -> List[Image.Image]:
|
| 260 |
+
images = []
|
| 261 |
+
for msg in messages:
|
| 262 |
+
if msg.get("role") == "user":
|
| 263 |
+
for content in msg.get("content", []):
|
| 264 |
+
if content.get("type") in ["image", "image_url"]:
|
| 265 |
+
if content["type"] == "image":
|
| 266 |
+
images.append(data_uri_to_pil(content["image"]).convert("RGB"))
|
| 267 |
+
else:
|
| 268 |
+
images.append(data_uri_to_pil(content["image_url"]["url"]).convert("RGB"))
|
| 269 |
+
return images
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
# -------------------------
|
| 273 |
+
# Prompt builder
|
| 274 |
+
# -------------------------
|
| 275 |
+
|
| 276 |
+
def build_prompt_with_template(tokenizer: AutoTokenizer, messages: List[Dict]) -> str:
|
| 277 |
+
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 278 |
+
text2, n = re.subn(
|
| 279 |
+
r"<\|media_begin\|>.*?<\|media_end\|>",
|
| 280 |
+
"<|vision_start|><|image_pad|><|vision_end|>",
|
| 281 |
+
text,
|
| 282 |
+
flags=re.S,
|
| 283 |
+
)
|
| 284 |
+
if n == 0:
|
| 285 |
+
raise RuntimeError("Did not find <|media_begin|>...<|media_end|> block in template.")
|
| 286 |
+
return text2
|
| 287 |
+
|
| 288 |
+
# -------------------------
|
| 289 |
+
# Deployment
|
| 290 |
+
# -------------------------
|
| 291 |
+
|
| 292 |
+
def build_app(model_path: str, num_replicas: int, port: int):
|
| 293 |
+
api = FastAPI(title="GTA1-32B Multi-GPU Service (High-throughput)")
|
| 294 |
+
|
| 295 |
+
@serve.deployment(
|
| 296 |
+
num_replicas=num_replicas,
|
| 297 |
+
ray_actor_options={"num_gpus": 1, "num_cpus": 4},
|
| 298 |
+
max_ongoing_requests=16,
|
| 299 |
+
)
|
| 300 |
+
class GTA1Model:
|
| 301 |
+
def __init__(self, model_path: str):
|
| 302 |
+
gpu_ids = ray.get_gpu_ids()
|
| 303 |
+
self.gpu_id = gpu_ids[0] if gpu_ids else 0
|
| 304 |
+
print(f"🔍 Ray assigned GPU IDs: {gpu_ids}")
|
| 305 |
+
# Initialize vLLM within this replica (Ray sets CUDA_VISIBLE_DEVICES)
|
| 306 |
+
print(f"🔄 Initializing vLLM on GPU {self.gpu_id}[ray id] from {model_path}")
|
| 307 |
+
if not torch.cuda.is_available():
|
| 308 |
+
raise RuntimeError("CUDA is not available")
|
| 309 |
+
|
| 310 |
+
self.llm = LLM(
|
| 311 |
+
model=model_path,
|
| 312 |
+
tokenizer=model_path,
|
| 313 |
+
tokenizer_mode="slow",
|
| 314 |
+
trust_remote_code=True,
|
| 315 |
+
dtype="bfloat16",
|
| 316 |
+
limit_mm_per_prompt={"image": 1},
|
| 317 |
+
max_model_len=32768,
|
| 318 |
+
tensor_parallel_size=1,
|
| 319 |
+
)
|
| 320 |
+
self.vllm_tokenizer = self.llm.get_tokenizer()
|
| 321 |
+
self.hf_tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 322 |
+
self.model_path = model_path
|
| 323 |
+
self.dtype = "bfloat16"
|
| 324 |
+
print(f"✅ vLLM initialized successfully (Ray GPU Id: {self.gpu_id})")
|
| 325 |
+
|
| 326 |
+
# ------------ batching core ------------
|
| 327 |
+
@serve.batch(max_batch_size=8, batch_wait_timeout_s=0.1) # increase if GPU allows
|
| 328 |
+
async def _generate_batch(self, payload: Union[Dict, List[Dict]]):
|
| 329 |
+
"""Build prompts, enforce single image, and call vLLM.generate."""
|
| 330 |
+
if isinstance(payload, dict):
|
| 331 |
+
list_of_payloads = [payload]
|
| 332 |
+
else:
|
| 333 |
+
list_of_payloads = payload
|
| 334 |
+
request_id = uuid.uuid4().hex[:8]
|
| 335 |
+
# --- Build per-sample prompt/image ---
|
| 336 |
+
prompts: List[str] = []
|
| 337 |
+
images_per_req: List[Image.Image] = []
|
| 338 |
+
error_results = []
|
| 339 |
+
early_exit = False
|
| 340 |
+
for p in list_of_payloads:
|
| 341 |
+
try:
|
| 342 |
+
messages = p["messages"]
|
| 343 |
+
imgs = extract_images(messages)
|
| 344 |
+
if len(imgs) != 1:
|
| 345 |
+
raise RuntimeError(f"Exactly one image is required, got {len(imgs)}")
|
| 346 |
+
prompt_text = build_prompt_with_template(self.hf_tokenizer, messages)
|
| 347 |
+
# Sanity check on tokens: 1 <|image_pad|>, no <|media_placeholder|>
|
| 348 |
+
tok = self.vllm_tokenizer
|
| 349 |
+
id_imgpad = tok.encode("<|image_pad|>", add_special_tokens=False)[0]
|
| 350 |
+
id_media = tok.encode("<|media_placeholder|>", add_special_tokens=False)[0]
|
| 351 |
+
ids = tok.encode(prompt_text, add_special_tokens=False)
|
| 352 |
+
if sum(i == id_imgpad for i in ids) != 1 or any(i == id_media for i in ids):
|
| 353 |
+
raise RuntimeError("Prompt media tokens invalid after conversion")
|
| 354 |
+
prompts.append(prompt_text)
|
| 355 |
+
images_per_req.append(imgs[0])
|
| 356 |
+
except Exception as e:
|
| 357 |
+
early_exit = True
|
| 358 |
+
trace = traceback.format_exc()
|
| 359 |
+
error_results.append(
|
| 360 |
+
{
|
| 361 |
+
"response": "",
|
| 362 |
+
"error": {
|
| 363 |
+
"message": str(e),
|
| 364 |
+
"trace": trace,
|
| 365 |
+
'type_of_payload': str(type(payload)),
|
| 366 |
+
'type_of_list_of_payloads': str(type(list_of_payloads)),
|
| 367 |
+
'type_of_p': str(type(p)),
|
| 368 |
+
'p_keys': str(p.keys()) if isinstance(p, dict) else str(p),
|
| 369 |
+
},
|
| 370 |
+
"usage": {},
|
| 371 |
+
"gpu_id": self.gpu_id
|
| 372 |
+
}
|
| 373 |
+
)
|
| 374 |
+
if early_exit:
|
| 375 |
+
return error_results
|
| 376 |
+
# --- vLLM generation ---
|
| 377 |
+
args_base = list_of_payloads[0]
|
| 378 |
+
sp = SamplingParams(
|
| 379 |
+
max_tokens=args_base.get("max_new_tokens", 512),
|
| 380 |
+
temperature=args_base.get("temperature", 0.0),
|
| 381 |
+
top_p=args_base.get("top_p", 0.9),
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
requests_list = [
|
| 385 |
+
{"prompt": pr, "multi_modal_data": {"image": [im]}}
|
| 386 |
+
for pr, im in zip(prompts, images_per_req)
|
| 387 |
+
]
|
| 388 |
+
|
| 389 |
+
outs = self.llm.generate(requests_list, sampling_params=sp)
|
| 390 |
+
|
| 391 |
+
tok = self.vllm_tokenizer
|
| 392 |
+
results: List[Dict] = []
|
| 393 |
+
for pr, o in zip(prompts, outs):
|
| 394 |
+
text = o.outputs[0].text if o.outputs else ""
|
| 395 |
+
gen_tokens = len(o.outputs[0].token_ids) if (o.outputs and hasattr(o.outputs[0], 'token_ids')) else None
|
| 396 |
+
prompt_tokens = len(tok.encode(pr, add_special_tokens=False))
|
| 397 |
+
usage = {
|
| 398 |
+
"prompt_tokens": prompt_tokens,
|
| 399 |
+
"generated_tokens": gen_tokens if gen_tokens is not None else None,
|
| 400 |
+
"total_tokens": (prompt_tokens + gen_tokens) if gen_tokens is not None else None,
|
| 401 |
+
}
|
| 402 |
+
results.append({
|
| 403 |
+
"response": text,
|
| 404 |
+
"error": "",
|
| 405 |
+
"usage": usage,
|
| 406 |
+
"gpu_id": self.gpu_id,
|
| 407 |
+
'bs_size_in_this_request': f"{request_id}:{len(list_of_payloads)}"
|
| 408 |
+
})
|
| 409 |
+
|
| 410 |
+
return results
|
| 411 |
+
|
| 412 |
+
# Exposed single-call entry that joins the batch
|
| 413 |
+
async def call_llm(self, payload: Dict):
|
| 414 |
+
try:
|
| 415 |
+
res = await self._generate_batch(payload)
|
| 416 |
+
return res
|
| 417 |
+
except Exception as e:
|
| 418 |
+
trace = traceback.format_exc()
|
| 419 |
+
return {"response": "", "error": {"message": str(e), "trace": trace}, "usage": {}, "gpu_id": self.gpu_id}
|
| 420 |
+
|
| 421 |
+
def health(self):
|
| 422 |
+
return {
|
| 423 |
+
"status": "ok",
|
| 424 |
+
"gpu_id": self.gpu_id,
|
| 425 |
+
"dtype": self.dtype,
|
| 426 |
+
"model_path": self.model_path,
|
| 427 |
+
}
|
| 428 |
+
|
| 429 |
+
model = GTA1Model.bind(model_path)
|
| 430 |
+
|
| 431 |
+
@serve.deployment(max_ongoing_requests=96)
|
| 432 |
+
@serve.ingress(api)
|
| 433 |
+
class GTA1App:
|
| 434 |
+
def __init__(self, model_handle):
|
| 435 |
+
self.model_deployment = model_handle
|
| 436 |
+
|
| 437 |
+
@api.get("/health")
|
| 438 |
+
async def health_all(self):
|
| 439 |
+
# Calling the same Serve handle N times does not guarantee each call hits a different replica
|
| 440 |
+
attempts = max(8, N_REPLICAS * 4) # oversample
|
| 441 |
+
calls = [self.model_deployment.health.remote() for i in range(attempts)]
|
| 442 |
+
replies = await asyncio.gather(*calls)
|
| 443 |
+
# dedupe by replica_id (or by tuple(gpu_id))
|
| 444 |
+
seen = {}
|
| 445 |
+
for r in replies:
|
| 446 |
+
seen[r.get("gpu_id", f"unknown-{len(seen)}")] = r
|
| 447 |
+
if len(seen) >= N_REPLICAS:
|
| 448 |
+
break
|
| 449 |
+
return {"replicas": list(seen.values())}
|
| 450 |
+
|
| 451 |
+
@api.post("/call_llm")
|
| 452 |
+
async def call_llm(self, req: Dict):
|
| 453 |
+
return await self.model_deployment.call_llm.remote(req)
|
| 454 |
+
|
| 455 |
+
return GTA1App.bind(model)
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
# -------------------------
|
| 459 |
+
# Main
|
| 460 |
+
# -------------------------
|
| 461 |
+
if __name__ == "__main__":
|
| 462 |
+
parser = argparse.ArgumentParser()
|
| 463 |
+
parser.add_argument("--model_path", type=str, default="Salesforce/GTA1-32B")
|
| 464 |
+
parser.add_argument("--host", type=str, default="0.0.0.0")
|
| 465 |
+
parser.add_argument("--port", type=int, default=3005)
|
| 466 |
+
parser.add_argument("--num_replicas", type=int, default=2)
|
| 467 |
+
args = parser.parse_args()
|
| 468 |
+
N_REPLICAS = args.num_replicas
|
| 469 |
+
ray.init(ignore_reinit_error=True)
|
| 470 |
+
|
| 471 |
+
print(f"🚀 Starting GTA1-32B service on {args.host}:{args.port}")
|
| 472 |
+
serve.start(detached=True, http_options={"host": args.host, "port": args.port})
|
| 473 |
+
|
| 474 |
+
app = build_app(args.model_path, args.num_replicas, args.port)
|
| 475 |
+
serve.run(app, name="GTA1-32B", route_prefix="/")
|
| 476 |
+
|
| 477 |
+
# Quick health sample
|
| 478 |
+
try:
|
| 479 |
+
r = requests.get(f"http://0.0.0.0:{args.port}/health", timeout=5)
|
| 480 |
+
print(r.json())
|
| 481 |
+
except Exception as e:
|
| 482 |
+
print("Health probe failed:", e)
|
| 483 |
+
|
| 484 |
+
```
|
| 485 |
+
Here is the example usage,
|
| 486 |
+
|
| 487 |
+
```python
|
| 488 |
+
import argparse
|
| 489 |
+
import base64
|
| 490 |
+
import concurrent.futures
|
| 491 |
+
import json
|
| 492 |
+
import os
|
| 493 |
+
import re
|
| 494 |
+
from typing import Dict, List, Tuple
|
| 495 |
+
from gui_agent.agent.gta1.format_message import encode_numpy_image_to_base64, encode_image_bytes, smart_resize
|
| 496 |
+
|
| 497 |
+
import requests
|
| 498 |
+
from PIL import Image, ImageDraw
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
def image_file_to_data_uri(image_path: str) -> str:
|
| 502 |
+
if not os.path.exists(image_path):
|
| 503 |
+
raise FileNotFoundError(f"Image not found: {image_path}")
|
| 504 |
+
with open(image_path, "rb") as f:
|
| 505 |
+
b64 = base64.b64encode(f.read()).decode("utf-8")
|
| 506 |
+
# default to png; serverside only requires a data URI header then comma
|
| 507 |
+
return f"data:image/png;base64,{b64}"
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
def build_messages(image_path: str, instruction: str, system_prompt: str) -> List[Dict]:
|
| 511 |
+
return [
|
| 512 |
+
{"role": "system", "content": system_prompt},
|
| 513 |
+
{
|
| 514 |
+
"role": "user",
|
| 515 |
+
"content": [
|
| 516 |
+
{"type": "image", "image": image_file_to_data_uri(image_path)},
|
| 517 |
+
{"type": "text", "text": instruction},
|
| 518 |
+
],
|
| 519 |
+
},
|
| 520 |
+
]
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
def call_health(base_url: str, timeout: float = 10.0) -> Dict:
|
| 524 |
+
r = requests.get(f"{base_url}/health", timeout=timeout)
|
| 525 |
+
r.raise_for_status()
|
| 526 |
+
return r.json()
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
def call_single(
|
| 530 |
+
base_url: str,
|
| 531 |
+
image_path: str,
|
| 532 |
+
instruction: str,
|
| 533 |
+
system_prompt: str,
|
| 534 |
+
max_new_tokens: int = 512,
|
| 535 |
+
temperature: float = 0.0,
|
| 536 |
+
top_p: float = 0.9,
|
| 537 |
+
timeout: float = 120.0,
|
| 538 |
+
) -> List[Dict]:
|
| 539 |
+
payload = {
|
| 540 |
+
"messages": build_messages(image_path, instruction, system_prompt),
|
| 541 |
+
"max_new_tokens": max_new_tokens,
|
| 542 |
+
"temperature": temperature,
|
| 543 |
+
"top_p": top_p,
|
| 544 |
+
}
|
| 545 |
+
r = requests.post(f"{base_url}/call_llm", json=payload, timeout=timeout)
|
| 546 |
+
r.raise_for_status()
|
| 547 |
+
resp = r.json()
|
| 548 |
+
if isinstance(resp, dict):
|
| 549 |
+
return [resp]
|
| 550 |
+
return resp
|
| 551 |
+
|
| 552 |
+
|
| 553 |
+
def call_many_concurrent(
|
| 554 |
+
base_url: str,
|
| 555 |
+
image_path: str,
|
| 556 |
+
instruction: str,
|
| 557 |
+
system_prompt: str,
|
| 558 |
+
num_requests: int,
|
| 559 |
+
concurrency: int,
|
| 560 |
+
max_new_tokens: int = 512,
|
| 561 |
+
temperature: float = 0.0,
|
| 562 |
+
top_p: float = 0.9,
|
| 563 |
+
timeout: float = 120.0,
|
| 564 |
+
) -> List[List[Dict]]:
|
| 565 |
+
results: List[List[Dict]] = []
|
| 566 |
+
|
| 567 |
+
def _one(i: int) -> List[Dict]:
|
| 568 |
+
# Vary instruction slightly so you can trace requests
|
| 569 |
+
instr = f"{instruction} [req {i+1}/{num_requests}]"
|
| 570 |
+
return call_single(
|
| 571 |
+
base_url,
|
| 572 |
+
image_path,
|
| 573 |
+
instr,
|
| 574 |
+
system_prompt,
|
| 575 |
+
max_new_tokens,
|
| 576 |
+
temperature,
|
| 577 |
+
top_p,
|
| 578 |
+
timeout,
|
| 579 |
+
)
|
| 580 |
+
|
| 581 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=concurrency) as pool:
|
| 582 |
+
futures = [pool.submit(_one, i) for i in range(num_requests)]
|
| 583 |
+
for fut in concurrent.futures.as_completed(futures):
|
| 584 |
+
results.append(fut.result())
|
| 585 |
+
return results
|
| 586 |
+
|
| 587 |
+
|
| 588 |
+
def pretty_print_response(batch_results: List[Dict]) -> None:
|
| 589 |
+
if isinstance(batch_results, dict):
|
| 590 |
+
batch_results = [batch_results]
|
| 591 |
+
for idx, item in enumerate(batch_results):
|
| 592 |
+
if item.get("error"):
|
| 593 |
+
print(f"[#{idx}] ERROR: {json.dumps(item['error'], ensure_ascii=False)})")
|
| 594 |
+
else:
|
| 595 |
+
usage = item.get("usage", {})
|
| 596 |
+
print(f"[#{idx}] gpu={item.get('gpu_id')} tokens={usage} text=\n{item.get('response','').strip()}\n")
|
| 597 |
+
|
| 598 |
+
CLICK_KWARGS_REGEX = re.compile(r"pyautogui\.click\(\s*x\s*=\s*(\d+)\s*,\s*y\s*=\s*(\d+)\s*\)")
|
| 599 |
+
CLICK_POSARGS_REGEX = re.compile(r"pyautogui\.click\(\s*(\d+)\s*,\s*(\d+)\s*\)")
|
| 600 |
+
|
| 601 |
+
def extract_clicks_from_text(text: str) -> List[Tuple[int, int]]:
|
| 602 |
+
clicks: List[Tuple[int, int]] = []
|
| 603 |
+
for x, y in CLICK_KWARGS_REGEX.findall(text or ""):
|
| 604 |
+
clicks.append((int(x), int(y)))
|
| 605 |
+
for x, y in CLICK_POSARGS_REGEX.findall(text or ""):
|
| 606 |
+
clicks.append((int(x), int(y)))
|
| 607 |
+
return clicks
|
| 608 |
+
|
| 609 |
+
def extract_clicks_from_results(result_items: List[Dict]) -> List[Tuple[int, int]]:
|
| 610 |
+
clicks: List[Tuple[int, int]] = []
|
| 611 |
+
if isinstance(result_items, dict):
|
| 612 |
+
result_items = [result_items]
|
| 613 |
+
for item in result_items:
|
| 614 |
+
if item.get("error"):
|
| 615 |
+
continue
|
| 616 |
+
clicks.extend(extract_clicks_from_text(item.get("response", "")))
|
| 617 |
+
return clicks
|
| 618 |
+
|
| 619 |
+
def compute_resized_dims_for_server_mapping(image_path: str) -> Tuple[int, int, int, int]:
|
| 620 |
+
with Image.open(image_path) as im:
|
| 621 |
+
width, height = im.size
|
| 622 |
+
resized_H, resized_W = smart_resize(
|
| 623 |
+
height,
|
| 624 |
+
width,
|
| 625 |
+
factor=28,
|
| 626 |
+
min_pixels=1000,
|
| 627 |
+
max_pixels=1000000000000,
|
| 628 |
+
)
|
| 629 |
+
return width, height, int(resized_W), int(resized_H)
|
| 630 |
+
|
| 631 |
+
def map_clicks_to_original(clicks_resized: List[Tuple[int, int]],
|
| 632 |
+
original_w: int,
|
| 633 |
+
original_h: int,
|
| 634 |
+
resized_w: int,
|
| 635 |
+
resized_h: int) -> List[Tuple[int, int]]:
|
| 636 |
+
if resized_w == 0 or resized_h == 0:
|
| 637 |
+
return []
|
| 638 |
+
scale_x = original_w / float(resized_w)
|
| 639 |
+
scale_y = original_h / float(resized_h)
|
| 640 |
+
mapped: List[Tuple[int, int]] = []
|
| 641 |
+
for x, y in clicks_resized:
|
| 642 |
+
mapped_x = int(round(x * scale_x))
|
| 643 |
+
mapped_y = int(round(y * scale_y))
|
| 644 |
+
mapped.append((mapped_x, mapped_y))
|
| 645 |
+
return mapped
|
| 646 |
+
|
| 647 |
+
def draw_circles_on_image(image_path: str,
|
| 648 |
+
points: List[Tuple[int, int]],
|
| 649 |
+
output_path: str,
|
| 650 |
+
radius: int = 8,
|
| 651 |
+
color: Tuple[int, int, int] = (255, 0, 0),
|
| 652 |
+
width: int = 3) -> None:
|
| 653 |
+
if not points:
|
| 654 |
+
return
|
| 655 |
+
with Image.open(image_path).convert("RGB") as img:
|
| 656 |
+
drawer = ImageDraw.Draw(img)
|
| 657 |
+
for (x, y) in points:
|
| 658 |
+
left = x - radius
|
| 659 |
+
top = y - radius
|
| 660 |
+
right = x + radius
|
| 661 |
+
bottom = y + radius
|
| 662 |
+
drawer.ellipse([(left, top), (right, bottom)], outline=color, fill=(0,255,0), width=width)
|
| 663 |
+
img.save(output_path)
|
| 664 |
+
print(f"Annotated image saved to: {output_path} (points drawn: {len(points)})")
|
| 665 |
+
|
| 666 |
+
SYSTEM_PROMPT = (
|
| 667 |
+
"You are a GUI agent. You are given a task and a screenshot of the screen. "
|
| 668 |
+
"You need to perform a series of pyautogui actions to complete the task."
|
| 669 |
+
)
|
| 670 |
+
def main():
|
| 671 |
+
parser = argparse.ArgumentParser(description="Examples: single and batched inference against GTA1-32B Ray Serve.")
|
| 672 |
+
parser.add_argument("--host", type=str, default="http://localhost", help="Ray Serve host, e.g. http://localhost or http://IP")
|
| 673 |
+
parser.add_argument("--port", type=int, default=3005, help="Ray Serve port")
|
| 674 |
+
parser.add_argument("--image", type=str, required=False, default="example.jpg", help="Path to input image")
|
| 675 |
+
parser.add_argument("--instruction", type=str, default="click the icon in the bottom row, third from the left", help="User instruction")
|
| 676 |
+
parser.add_argument("--system", type=str, default=SYSTEM_PROMPT)
|
| 677 |
+
parser.add_argument("--mode", type=str, choices=["single", "batch", "health"], default="batch")
|
| 678 |
+
parser.add_argument("--num_requests", type=int, default=8, help="Number of requests in batch mode")
|
| 679 |
+
parser.add_argument("--concurrency", type=int, default=8, help="Max concurrent HTTP calls in batch mode")
|
| 680 |
+
parser.add_argument("--max_new_tokens", type=int, default=512)
|
| 681 |
+
parser.add_argument("--temperature", type=float, default=0.0)
|
| 682 |
+
parser.add_argument("--top_p", type=float, default=0.9)
|
| 683 |
+
parser.add_argument("--timeout", type=float, default=180.0)
|
| 684 |
+
args = parser.parse_args()
|
| 685 |
+
|
| 686 |
+
base_url = f"{args.host}:{args.port}"
|
| 687 |
+
|
| 688 |
+
if args.mode == "health":
|
| 689 |
+
info = call_health(base_url, timeout=10.0)
|
| 690 |
+
print(json.dumps(info, indent=2))
|
| 691 |
+
return
|
| 692 |
+
|
| 693 |
+
if args.mode == "single":
|
| 694 |
+
result_list = call_single(
|
| 695 |
+
base_url=base_url,
|
| 696 |
+
image_path=args.image,
|
| 697 |
+
instruction=args.instruction,
|
| 698 |
+
system_prompt=args.system,
|
| 699 |
+
max_new_tokens=args.max_new_tokens,
|
| 700 |
+
temperature=args.temperature,
|
| 701 |
+
top_p=args.top_p,
|
| 702 |
+
timeout=args.timeout,
|
| 703 |
+
)
|
| 704 |
+
print(result_list)
|
| 705 |
+
pretty_print_response(result_list)
|
| 706 |
+
clicks_resized = extract_clicks_from_results(result_list)
|
| 707 |
+
if clicks_resized:
|
| 708 |
+
orig_w, orig_h, resized_w, resized_h = compute_resized_dims_for_server_mapping(args.image)
|
| 709 |
+
mapped_clicks = map_clicks_to_original(clicks_resized, orig_w, orig_h, resized_w, resized_h)
|
| 710 |
+
out_path = f"ray_serve/annotated.png"
|
| 711 |
+
draw_circles_on_image(args.image, mapped_clicks, out_path)
|
| 712 |
+
return
|
| 713 |
+
|
| 714 |
+
if args.mode == "batch":
|
| 715 |
+
print(f"Submitting {args.num_requests} requests with concurrency={args.concurrency}...")
|
| 716 |
+
batch_outs = call_many_concurrent(
|
| 717 |
+
base_url=base_url,
|
| 718 |
+
image_path=args.image,
|
| 719 |
+
instruction=args.instruction,
|
| 720 |
+
system_prompt=args.system,
|
| 721 |
+
num_requests=args.num_requests,
|
| 722 |
+
concurrency=args.concurrency,
|
| 723 |
+
max_new_tokens=args.max_new_tokens,
|
| 724 |
+
temperature=args.temperature,
|
| 725 |
+
top_p=args.top_p,
|
| 726 |
+
timeout=args.timeout,
|
| 727 |
+
)
|
| 728 |
+
for i, one_result in enumerate(batch_outs):
|
| 729 |
+
print(f"===== Result for request {i+1} =====")
|
| 730 |
+
pretty_print_response(one_result)
|
| 731 |
+
all_clicks_resized: List[Tuple[int, int]] = []
|
| 732 |
+
for one_result in batch_outs:
|
| 733 |
+
all_clicks_resized.extend(extract_clicks_from_results(one_result))
|
| 734 |
+
if all_clicks_resized:
|
| 735 |
+
orig_w, orig_h, resized_w, resized_h = compute_resized_dims_for_server_mapping(args.image)
|
| 736 |
+
mapped_clicks = map_clicks_to_original(all_clicks_resized, orig_w, orig_h, resized_w, resized_h)
|
| 737 |
+
out_path = f"ray_serve/annotated.png"
|
| 738 |
+
draw_circles_on_image(args.image, mapped_clicks, out_path)
|
| 739 |
+
return
|
| 740 |
+
|
| 741 |
+
|
| 742 |
+
if __name__ == "__main__":
|
| 743 |
+
main()
|
| 744 |
+
```
|
| 745 |
+
## Ethical Considerations
|
| 746 |
+
|
| 747 |
+
This model is released for research and educational purposes. While our model demonstrates strong performance on GUI benchmarks, users should carefully evaluate its suitability for their specific use cases.
|
| 748 |
+
|
| 749 |
+
**Important Considerations:**
|
| 750 |
+
- **Accuracy Limitations:** Like all AI systems, this model may produce incorrect outputs or fail to accurately identify GUI elements in certain scenarios.
|
| 751 |
+
- **Safety and Security:** Exercise caution when deploying GUI automation agents, especially in production environments where incorrect actions could affect system integrity or data security.
|
| 752 |
+
- **Human Oversight:** We recommend maintaining appropriate human supervision when using this model for automated GUI interactions.
|
| 753 |
+
- **Compliance:** Users are responsible for ensuring their use of this model complies with applicable laws, regulations, and organizational policies.
|
| 754 |
+
|
| 755 |
+
**Recommended Best Practices:**
|
| 756 |
+
- Thoroughly test the model in controlled environments before production deployment
|
| 757 |
+
- Implement safeguards and error handling mechanisms
|
| 758 |
+
- Consider the potential impact of automated actions on user systems and data
|
| 759 |
+
- Regularly monitor and validate model performance in your specific domain
|
| 760 |
+
|
| 761 |
+
For further guidance on use cases, refer to our AUP and AI AUP.
|
| 762 |
+
|
| 763 |
+
## Citation
|
| 764 |
+
|
| 765 |
+
If you're using any GTA model or find it helpful in your research, please cite it as follows:
|
| 766 |
+
|
| 767 |
+
```markdown
|
| 768 |
+
@article{yang2025gta1guitesttimescaling,
|
| 769 |
+
title={GTA1: GUI Test-time Scaling Agent},
|
| 770 |
+
author={Yan Yang and Dongxu Li and Yutong Dai and Yuhao Yang and Ziyang Luo and Zirui Zhao and Zhiyuan Hu and Junzhe Huang and Amrita Saha and Zeyuan Chen and Ran Xu and Liyuan Pan and Silvio Savarese and Caiming Xiong and Junnan Li},
|
| 771 |
+
year={2025},
|
| 772 |
+
eprint={2507.05791},
|
| 773 |
+
archivePrefix={arXiv},
|
| 774 |
+
primaryClass={cs.AI},
|
| 775 |
+
url={https://arxiv.org/abs/2507.05791},
|
| 776 |
+
}
|
| 777 |
+
```
|
config.bak.json
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"OpenCUAForConditionalGeneration"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_opencua.OpenCUAConfig",
|
| 7 |
+
"AutoModel": "modeling_opencua.OpenCUAForConditionalGeneration",
|
| 8 |
+
"AutoModelForCausalLM": "modeling_opencua.OpenCUAForConditionalGeneration"
|
| 9 |
+
},
|
| 10 |
+
"ignore_index": -100,
|
| 11 |
+
"media_placeholder_token_id": 151664,
|
| 12 |
+
"model_type": "opencua",
|
| 13 |
+
"pad_token_id": 0,
|
| 14 |
+
"text_config": {
|
| 15 |
+
"bos_token_id": 151643,
|
| 16 |
+
"eos_token_id": 151644,
|
| 17 |
+
"head_dim": 128,
|
| 18 |
+
"hidden_act": "silu",
|
| 19 |
+
"hidden_size": 5120,
|
| 20 |
+
"initializer_range": 0.02,
|
| 21 |
+
"intermediate_size": 27648,
|
| 22 |
+
"k_proj_bias": true,
|
| 23 |
+
"max_length": 20,
|
| 24 |
+
"min_length": 0,
|
| 25 |
+
"model_type": "qwen2",
|
| 26 |
+
"num_attention_heads": 40,
|
| 27 |
+
"num_beam_groups": 1,
|
| 28 |
+
"num_beams": 1,
|
| 29 |
+
"num_hidden_layers": 64,
|
| 30 |
+
"num_key_value_heads": 8,
|
| 31 |
+
"pad_token_id": 152063,
|
| 32 |
+
"pretraining_sequence_length": 131072,
|
| 33 |
+
"q_proj_bias": true,
|
| 34 |
+
"rms_norm_eps": 1e-05,
|
| 35 |
+
"rope_theta": 1000000.0,
|
| 36 |
+
"tie_word_embeddings": false,
|
| 37 |
+
"torch_dtype": "bfloat16",
|
| 38 |
+
"use_bfloat16": false,
|
| 39 |
+
"use_cache": true,
|
| 40 |
+
"v_proj_bias": true,
|
| 41 |
+
"vocab_size": 152064
|
| 42 |
+
},
|
| 43 |
+
"tie_word_embeddings": false,
|
| 44 |
+
"torch_dtype": "bfloat16",
|
| 45 |
+
"transformers_version": "4.48.3",
|
| 46 |
+
"vision_config": {
|
| 47 |
+
"depth": 32,
|
| 48 |
+
"fullatt_block_indexes": [
|
| 49 |
+
7,
|
| 50 |
+
15,
|
| 51 |
+
23,
|
| 52 |
+
31
|
| 53 |
+
],
|
| 54 |
+
"hidden_act": "silu",
|
| 55 |
+
"hidden_size": 1280,
|
| 56 |
+
"num_heads": 16,
|
| 57 |
+
"in_chans": 3,
|
| 58 |
+
"intermediate_size": 3456,
|
| 59 |
+
|
| 60 |
+
"patch_size": 14,
|
| 61 |
+
"spatial_merge_size": 2,
|
| 62 |
+
"spatial_patch_size": 14,
|
| 63 |
+
"temporal_patch_size": 2,
|
| 64 |
+
"out_hidden_size": 5120,
|
| 65 |
+
"tokens_per_second": 2,
|
| 66 |
+
"window_size": 112
|
| 67 |
+
},
|
| 68 |
+
"vocab_size": 152064
|
| 69 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": ["Qwen2_5_VLForConditionalGeneration"],
|
| 3 |
+
"model_type": "qwen2_5_vl",
|
| 4 |
+
"transformers_version": "4.49.0",
|
| 5 |
+
"torch_dtype": "bfloat16",
|
| 6 |
+
|
| 7 |
+
"processor_class": "OpenCUAProcessor",
|
| 8 |
+
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"attention_dropout": 0.0,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"rms_norm_eps": 1e-06,
|
| 13 |
+
"tie_word_embeddings": false,
|
| 14 |
+
"use_cache": true,
|
| 15 |
+
|
| 16 |
+
"vocab_size": 152064,
|
| 17 |
+
"max_position_embeddings": 128000,
|
| 18 |
+
"sliding_window": 32768,
|
| 19 |
+
"use_sliding_window": false,
|
| 20 |
+
"max_window_layers": 64,
|
| 21 |
+
|
| 22 |
+
"rope_scaling": { "type": "default" },
|
| 23 |
+
"rope_theta": 1000000.0,
|
| 24 |
+
|
| 25 |
+
"hidden_size": 5120,
|
| 26 |
+
"intermediate_size": 27648,
|
| 27 |
+
"num_hidden_layers": 64,
|
| 28 |
+
"num_attention_heads": 40,
|
| 29 |
+
"num_key_value_heads": 8,
|
| 30 |
+
|
| 31 |
+
"bos_token_id": 151643,
|
| 32 |
+
"eos_token_id": 151644,
|
| 33 |
+
"pad_token_id": 152063,
|
| 34 |
+
|
| 35 |
+
"vision_start_token_id": 151665,
|
| 36 |
+
"vision_end_token_id": 151666,
|
| 37 |
+
"vision_token_id": 151654,
|
| 38 |
+
"image_token_id": 151667,
|
| 39 |
+
"video_token_id": 151664,
|
| 40 |
+
|
| 41 |
+
"vision_config": {
|
| 42 |
+
"model_type": "qwen2_5_vl",
|
| 43 |
+
"in_chans": 3,
|
| 44 |
+
"hidden_size": 1280,
|
| 45 |
+
"intermediate_size": 3456,
|
| 46 |
+
"out_hidden_size": 5120,
|
| 47 |
+
"spatial_patch_size": 14,
|
| 48 |
+
"tokens_per_second": 2,
|
| 49 |
+
"torch_dtype": "bfloat16"
|
| 50 |
+
}
|
| 51 |
+
}
|
configuration_opencua.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 2 |
+
from transformers.models.qwen2_5_vl.configuration_qwen2_5_vl import Qwen2_5_VLVisionConfig
|
| 3 |
+
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class OpenCUAConfig(PretrainedConfig):
|
| 7 |
+
"""OpenCUA-2.5-32B model configuration.
|
| 8 |
+
|
| 9 |
+
Args:
|
| 10 |
+
vision_config: Configuration for the vision model.Qwen2_5_VLVisionConfig
|
| 11 |
+
text_config: Configuration for the text model. Qwen2Config
|
| 12 |
+
pad_token_id: The token ID to use for padding.
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
model_type = "opencua"
|
| 16 |
+
|
| 17 |
+
def __init__(
|
| 18 |
+
self,
|
| 19 |
+
vision_config: dict | Qwen2_5_VLVisionConfig | None = None,
|
| 20 |
+
text_config: dict | Qwen2Config | None = None,
|
| 21 |
+
ignore_index: int = -100,
|
| 22 |
+
media_placeholder_token_id: int = 151664,
|
| 23 |
+
pad_token_id: int = 0,
|
| 24 |
+
**kwargs
|
| 25 |
+
):
|
| 26 |
+
if isinstance(vision_config, dict):
|
| 27 |
+
vision_config = Qwen2_5_VLVisionConfig(**vision_config)
|
| 28 |
+
self.vision_config = vision_config
|
| 29 |
+
|
| 30 |
+
if isinstance(text_config, dict):
|
| 31 |
+
text_config = Qwen2Config(**text_config)
|
| 32 |
+
self.text_config = text_config
|
| 33 |
+
|
| 34 |
+
self.ignore_index = ignore_index
|
| 35 |
+
self.media_placeholder_token_id = media_placeholder_token_id
|
| 36 |
+
|
| 37 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
generation_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_length": 32768,
|
| 3 |
+
"eos_token_id": 151644
|
| 4 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:61a1a81d27692172b8c4af0dba584d54f9761065e65a8a99800cc2d46334a78d
|
| 3 |
+
size 4932320880
|
model-00002-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4c166a525e6180f6a33d89c8d1c241b87ab4c14295e77a48d351328abef8babb
|
| 3 |
+
size 4727609720
|
model-00003-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4265e2f92162197d911af82da2900280989834d2dffef68b302a5818c4c0ee95
|
| 3 |
+
size 4822749744
|
model-00004-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bbc0137d617f58571e5669e20f199ad0fcef7bbe89126aef4de08b4c6a04be5a
|
| 3 |
+
size 4998049568
|
model-00005-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a1f6c2afe9fa652bf72633734170e2f8e520ebe6a0b4a291916543cd87f0149e
|
| 3 |
+
size 4883041912
|
model-00006-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b8258dd0383f72df276a81618b19194bedfb4d9d30eb941b54252a86e203d029
|
| 3 |
+
size 4772902520
|
model-00007-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f8c4849d1e7e8f76954e18183b1ff2b4560413c5a9df5e305f204c1025582e6b
|
| 3 |
+
size 4966230504
|
model-00008-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:32869aec221c400372785a300e2285c45664ac0b584576c3db40a9c9ad842359
|
| 3 |
+
size 4800968432
|
model-00009-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eadb68817ae3046cc0867c72d8f058e97202c9b2fc79f50f91d8905e1a74b0e4
|
| 3 |
+
size 4931462480
|
model-00010-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:de45132043dbcfd9728b92fc13cc27166ec3fa2ce4bcac50c97e3196b77ed039
|
| 3 |
+
size 4728824872
|
model-00011-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:96e16b21960f0a3e5f1de0f8f120c3c1860fd5b8c97f8dda9e784401965d0ed9
|
| 3 |
+
size 4943615728
|
model-00012-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ebc7d2855167a5e1b4e1d48734da0fc45d2117638a58a68223b9ec6e4e895f54
|
| 3 |
+
size 4744353832
|
model-00013-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7882dd3323b2ab948e7a2c59d8ec7ad5d314f509463cc20049196b7318a6eb50
|
| 3 |
+
size 4817449768
|
model-00014-of-00014.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f7d75bc05db0c27fda49bc6e417b96ca8f8b07754e0e32570e443c168ad202f6
|
| 3 |
+
size 3835987888
|
model.args.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f63a4fc32414b15ac0c96d0d6b4889f0bd29bb7c16bde542c978c0e01dd49beb
|
| 3 |
+
size 25196
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,1168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 66905436672
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00008-of-00014.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00008-of-00014.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
| 20 |
+
"model.layers.1.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
| 22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
| 23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
| 24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
| 31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00014-of-00014.safetensors",
|
| 32 |
+
"model.layers.10.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
| 34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
| 35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00014-of-00014.safetensors",
|
| 36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00014-of-00014.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00014-of-00014.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
| 43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
| 44 |
+
"model.layers.11.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
| 46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
| 47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
| 48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
| 52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
| 55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
| 56 |
+
"model.layers.12.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
| 58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
| 60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
| 63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00014-of-00014.safetensors",
|
| 64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
| 67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
| 68 |
+
"model.layers.13.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
| 70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
| 71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
| 72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
| 74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
| 75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
| 76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
| 77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
| 78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
| 79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
| 80 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
| 82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
| 83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
| 84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
| 85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
| 86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
| 87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
| 88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
| 89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
| 90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
| 91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
| 92 |
+
"model.layers.15.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
| 94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
| 95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
| 98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
| 99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
| 100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
| 101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
| 102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
| 103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
| 104 |
+
"model.layers.16.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
| 105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
| 106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
| 107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
| 108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
| 110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
| 111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
| 112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
| 113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
| 114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
| 115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
| 116 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
| 118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
| 120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
| 122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
| 123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
| 124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
|
| 125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
| 126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
| 127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
| 128 |
+
"model.layers.18.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
| 130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
| 131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00014-of-00014.safetensors",
|
| 132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
| 134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
| 135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
| 136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
| 137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
| 138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
| 139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
| 140 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
| 142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
| 143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
| 144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
| 145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
| 146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
| 147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
| 148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
| 149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00014-of-00014.safetensors",
|
| 150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
| 151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
| 152 |
+
"model.layers.2.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
| 154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
| 155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
| 156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00014-of-00014.safetensors",
|
| 157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
| 158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
| 159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
| 160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
| 161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
| 162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
| 163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
| 164 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
| 165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00014-of-00014.safetensors",
|
| 166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
| 167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
| 168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
| 169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
| 170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
| 171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
| 172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
| 173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
| 174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
| 175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
| 176 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
| 177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
| 178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
| 179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00014-of-00014.safetensors",
|
| 180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
| 182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
| 183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
| 184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
| 185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
| 186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
| 187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
| 188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
| 189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
| 190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
| 191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
| 192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
| 193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
| 194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
| 195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
| 196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
| 197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
| 198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
| 199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
| 200 |
+
"model.layers.23.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
| 201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
| 202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
| 203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
| 204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
| 206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
| 207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
| 208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
| 209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
| 210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
| 211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
| 212 |
+
"model.layers.24.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
| 213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
| 214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
| 215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
| 216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
| 217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
| 218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
| 219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
| 220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
| 221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
| 222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
| 223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
| 224 |
+
"model.layers.25.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
| 225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
| 226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
| 227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
| 228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
| 230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
| 231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
| 232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
| 233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
| 234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
| 235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
| 236 |
+
"model.layers.26.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
| 237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
| 238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
| 239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
| 240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
| 241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
| 242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
| 243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
| 244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
| 245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
| 246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
| 247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
| 248 |
+
"model.layers.27.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
| 250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
| 251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
| 252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
| 253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
| 254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
| 255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
| 256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
| 257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
| 258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
| 259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
| 260 |
+
"model.layers.28.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
| 262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
| 263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
| 264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
| 265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
| 266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
| 267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
| 268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
| 269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
| 270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
| 271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
| 272 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
| 273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
| 274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
| 275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
| 276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
| 278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
| 279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00014-of-00014.safetensors",
|
| 280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
| 281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
| 282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00014-of-00014.safetensors",
|
| 283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
| 284 |
+
"model.layers.3.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
| 285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
| 286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
| 287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
| 288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
| 290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
| 291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
| 292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
| 293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
| 294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
| 295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
| 296 |
+
"model.layers.30.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
| 298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
| 300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
| 301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00014-of-00014.safetensors",
|
| 302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
| 303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
| 304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
| 305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
| 306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
| 307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
| 308 |
+
"model.layers.31.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
| 309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
| 310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
| 311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
| 312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
| 313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
| 314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
| 315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
| 316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
| 317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
| 318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
| 319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
| 320 |
+
"model.layers.32.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
| 322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
| 323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
| 324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
| 325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
| 326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
| 327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
| 328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
| 329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00014-of-00014.safetensors",
|
| 330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
| 331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
| 332 |
+
"model.layers.33.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
| 334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
| 336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
| 337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
| 338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
| 339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
| 340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
| 341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
| 342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
| 343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00014-of-00014.safetensors",
|
| 344 |
+
"model.layers.34.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
| 345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
| 347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
| 349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
| 350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
| 351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
| 352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
| 353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
| 354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
| 355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
| 356 |
+
"model.layers.35.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
| 357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
| 358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
| 359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
| 360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
| 362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
| 363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
| 364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
| 365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
| 366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
| 367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
| 368 |
+
"model.layers.36.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 369 |
+
"model.layers.36.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
| 370 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
| 371 |
+
"model.layers.36.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
| 372 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 373 |
+
"model.layers.36.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
| 374 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00014-of-00014.safetensors",
|
| 375 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
| 376 |
+
"model.layers.36.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
| 377 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
| 378 |
+
"model.layers.36.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
| 379 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
| 380 |
+
"model.layers.37.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
| 381 |
+
"model.layers.37.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
| 382 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
| 383 |
+
"model.layers.37.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
| 384 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 385 |
+
"model.layers.37.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
| 386 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
| 387 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
| 388 |
+
"model.layers.37.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
| 389 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
| 390 |
+
"model.layers.37.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
| 391 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
| 392 |
+
"model.layers.38.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 393 |
+
"model.layers.38.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
| 394 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
| 395 |
+
"model.layers.38.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
| 396 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
| 397 |
+
"model.layers.38.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
| 398 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
| 399 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
| 400 |
+
"model.layers.38.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
| 401 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
| 402 |
+
"model.layers.38.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
| 403 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
| 404 |
+
"model.layers.39.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 405 |
+
"model.layers.39.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
| 406 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00014-of-00014.safetensors",
|
| 407 |
+
"model.layers.39.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
| 408 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
| 409 |
+
"model.layers.39.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
| 410 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
| 411 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
| 412 |
+
"model.layers.39.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
| 413 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
| 414 |
+
"model.layers.39.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
| 415 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
| 416 |
+
"model.layers.4.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
| 417 |
+
"model.layers.4.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
| 418 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 419 |
+
"model.layers.4.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
| 420 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 421 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
| 422 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
| 423 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
| 424 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
| 425 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00014-of-00014.safetensors",
|
| 426 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
| 427 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
| 428 |
+
"model.layers.40.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 429 |
+
"model.layers.40.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
| 430 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
| 431 |
+
"model.layers.40.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
| 432 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
| 433 |
+
"model.layers.40.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
| 434 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
| 435 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
| 436 |
+
"model.layers.40.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
| 437 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
| 438 |
+
"model.layers.40.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
| 439 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
| 440 |
+
"model.layers.41.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 441 |
+
"model.layers.41.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
| 442 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
| 443 |
+
"model.layers.41.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
| 444 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 445 |
+
"model.layers.41.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
| 446 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
| 447 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
| 448 |
+
"model.layers.41.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
|
| 449 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
| 450 |
+
"model.layers.41.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
| 451 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
| 452 |
+
"model.layers.42.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 453 |
+
"model.layers.42.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
| 454 |
+
"model.layers.42.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
| 455 |
+
"model.layers.42.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 456 |
+
"model.layers.42.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
| 457 |
+
"model.layers.42.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
| 458 |
+
"model.layers.42.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
| 459 |
+
"model.layers.42.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
| 460 |
+
"model.layers.42.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
| 461 |
+
"model.layers.42.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
| 462 |
+
"model.layers.42.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
| 463 |
+
"model.layers.42.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
| 464 |
+
"model.layers.43.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 465 |
+
"model.layers.43.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
| 466 |
+
"model.layers.43.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
| 467 |
+
"model.layers.43.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
| 468 |
+
"model.layers.43.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 469 |
+
"model.layers.43.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
| 470 |
+
"model.layers.43.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
| 471 |
+
"model.layers.43.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
| 472 |
+
"model.layers.43.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
| 473 |
+
"model.layers.43.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
| 474 |
+
"model.layers.43.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
| 475 |
+
"model.layers.43.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
| 476 |
+
"model.layers.44.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 477 |
+
"model.layers.44.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 478 |
+
"model.layers.44.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
| 479 |
+
"model.layers.44.mlp.up_proj.weight": "model-00014-of-00014.safetensors",
|
| 480 |
+
"model.layers.44.post_attention_layernorm.weight": "model-00014-of-00014.safetensors",
|
| 481 |
+
"model.layers.44.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
| 482 |
+
"model.layers.44.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
| 483 |
+
"model.layers.44.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
| 484 |
+
"model.layers.44.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
| 485 |
+
"model.layers.44.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
| 486 |
+
"model.layers.44.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
| 487 |
+
"model.layers.44.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
| 488 |
+
"model.layers.45.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 489 |
+
"model.layers.45.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
| 490 |
+
"model.layers.45.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
| 491 |
+
"model.layers.45.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
| 492 |
+
"model.layers.45.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 493 |
+
"model.layers.45.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
| 494 |
+
"model.layers.45.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
| 495 |
+
"model.layers.45.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
| 496 |
+
"model.layers.45.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
| 497 |
+
"model.layers.45.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
| 498 |
+
"model.layers.45.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
| 499 |
+
"model.layers.45.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
| 500 |
+
"model.layers.46.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 501 |
+
"model.layers.46.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 502 |
+
"model.layers.46.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
| 503 |
+
"model.layers.46.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
| 504 |
+
"model.layers.46.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 505 |
+
"model.layers.46.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
| 506 |
+
"model.layers.46.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
| 507 |
+
"model.layers.46.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
| 508 |
+
"model.layers.46.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
| 509 |
+
"model.layers.46.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
| 510 |
+
"model.layers.46.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
| 511 |
+
"model.layers.46.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
| 512 |
+
"model.layers.47.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
| 513 |
+
"model.layers.47.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
| 514 |
+
"model.layers.47.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
| 515 |
+
"model.layers.47.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
| 516 |
+
"model.layers.47.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 517 |
+
"model.layers.47.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
| 518 |
+
"model.layers.47.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
| 519 |
+
"model.layers.47.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
| 520 |
+
"model.layers.47.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
| 521 |
+
"model.layers.47.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
| 522 |
+
"model.layers.47.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
| 523 |
+
"model.layers.47.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
| 524 |
+
"model.layers.48.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
| 525 |
+
"model.layers.48.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
| 526 |
+
"model.layers.48.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
| 527 |
+
"model.layers.48.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
| 528 |
+
"model.layers.48.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
| 529 |
+
"model.layers.48.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
| 530 |
+
"model.layers.48.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
| 531 |
+
"model.layers.48.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
| 532 |
+
"model.layers.48.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
| 533 |
+
"model.layers.48.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
| 534 |
+
"model.layers.48.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
| 535 |
+
"model.layers.48.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
| 536 |
+
"model.layers.49.input_layernorm.weight": "model-00014-of-00014.safetensors",
|
| 537 |
+
"model.layers.49.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
| 538 |
+
"model.layers.49.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
| 539 |
+
"model.layers.49.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
| 540 |
+
"model.layers.49.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 541 |
+
"model.layers.49.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
| 542 |
+
"model.layers.49.self_attn.k_proj.weight": "model-00014-of-00014.safetensors",
|
| 543 |
+
"model.layers.49.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
| 544 |
+
"model.layers.49.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
| 545 |
+
"model.layers.49.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
| 546 |
+
"model.layers.49.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
| 547 |
+
"model.layers.49.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
| 548 |
+
"model.layers.5.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 549 |
+
"model.layers.5.mlp.down_proj.weight": "model-00014-of-00014.safetensors",
|
| 550 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
| 551 |
+
"model.layers.5.mlp.up_proj.weight": "model-00014-of-00014.safetensors",
|
| 552 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 553 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
| 554 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
| 555 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
| 556 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
| 557 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
| 558 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00014-of-00014.safetensors",
|
| 559 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
| 560 |
+
"model.layers.50.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
| 561 |
+
"model.layers.50.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
| 562 |
+
"model.layers.50.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
| 563 |
+
"model.layers.50.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
| 564 |
+
"model.layers.50.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
| 565 |
+
"model.layers.50.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
| 566 |
+
"model.layers.50.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
| 567 |
+
"model.layers.50.self_attn.o_proj.weight": "model-00014-of-00014.safetensors",
|
| 568 |
+
"model.layers.50.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
| 569 |
+
"model.layers.50.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
| 570 |
+
"model.layers.50.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
| 571 |
+
"model.layers.50.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
| 572 |
+
"model.layers.51.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
| 573 |
+
"model.layers.51.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
| 574 |
+
"model.layers.51.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
| 575 |
+
"model.layers.51.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
| 576 |
+
"model.layers.51.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 577 |
+
"model.layers.51.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
| 578 |
+
"model.layers.51.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
| 579 |
+
"model.layers.51.self_attn.o_proj.weight": "model-00014-of-00014.safetensors",
|
| 580 |
+
"model.layers.51.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
| 581 |
+
"model.layers.51.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
| 582 |
+
"model.layers.51.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
| 583 |
+
"model.layers.51.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
| 584 |
+
"model.layers.52.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
| 585 |
+
"model.layers.52.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
| 586 |
+
"model.layers.52.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
| 587 |
+
"model.layers.52.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
| 588 |
+
"model.layers.52.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 589 |
+
"model.layers.52.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
| 590 |
+
"model.layers.52.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
| 591 |
+
"model.layers.52.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
| 592 |
+
"model.layers.52.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
| 593 |
+
"model.layers.52.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
| 594 |
+
"model.layers.52.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
| 595 |
+
"model.layers.52.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
| 596 |
+
"model.layers.53.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 597 |
+
"model.layers.53.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
| 598 |
+
"model.layers.53.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
| 599 |
+
"model.layers.53.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
| 600 |
+
"model.layers.53.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
| 601 |
+
"model.layers.53.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
| 602 |
+
"model.layers.53.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
| 603 |
+
"model.layers.53.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
| 604 |
+
"model.layers.53.self_attn.q_proj.bias": "model-00014-of-00014.safetensors",
|
| 605 |
+
"model.layers.53.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
| 606 |
+
"model.layers.53.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
| 607 |
+
"model.layers.53.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
| 608 |
+
"model.layers.54.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
| 609 |
+
"model.layers.54.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
| 610 |
+
"model.layers.54.mlp.gate_proj.weight": "model-00014-of-00014.safetensors",
|
| 611 |
+
"model.layers.54.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
| 612 |
+
"model.layers.54.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 613 |
+
"model.layers.54.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
| 614 |
+
"model.layers.54.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
| 615 |
+
"model.layers.54.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
| 616 |
+
"model.layers.54.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
| 617 |
+
"model.layers.54.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
| 618 |
+
"model.layers.54.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
| 619 |
+
"model.layers.54.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
| 620 |
+
"model.layers.55.input_layernorm.weight": "model-00014-of-00014.safetensors",
|
| 621 |
+
"model.layers.55.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
| 622 |
+
"model.layers.55.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 623 |
+
"model.layers.55.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
| 624 |
+
"model.layers.55.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 625 |
+
"model.layers.55.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
| 626 |
+
"model.layers.55.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
| 627 |
+
"model.layers.55.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
| 628 |
+
"model.layers.55.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
| 629 |
+
"model.layers.55.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
| 630 |
+
"model.layers.55.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
| 631 |
+
"model.layers.55.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
| 632 |
+
"model.layers.56.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
| 633 |
+
"model.layers.56.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
| 634 |
+
"model.layers.56.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
| 635 |
+
"model.layers.56.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
| 636 |
+
"model.layers.56.post_attention_layernorm.weight": "model-00014-of-00014.safetensors",
|
| 637 |
+
"model.layers.56.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
| 638 |
+
"model.layers.56.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
| 639 |
+
"model.layers.56.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
| 640 |
+
"model.layers.56.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
|
| 641 |
+
"model.layers.56.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
| 642 |
+
"model.layers.56.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
| 643 |
+
"model.layers.56.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
| 644 |
+
"model.layers.57.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
| 645 |
+
"model.layers.57.mlp.down_proj.weight": "model-00014-of-00014.safetensors",
|
| 646 |
+
"model.layers.57.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
| 647 |
+
"model.layers.57.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
| 648 |
+
"model.layers.57.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 649 |
+
"model.layers.57.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
| 650 |
+
"model.layers.57.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
| 651 |
+
"model.layers.57.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
| 652 |
+
"model.layers.57.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
| 653 |
+
"model.layers.57.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
| 654 |
+
"model.layers.57.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
| 655 |
+
"model.layers.57.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
| 656 |
+
"model.layers.58.input_layernorm.weight": "model-00014-of-00014.safetensors",
|
| 657 |
+
"model.layers.58.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
| 658 |
+
"model.layers.58.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 659 |
+
"model.layers.58.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
| 660 |
+
"model.layers.58.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 661 |
+
"model.layers.58.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
| 662 |
+
"model.layers.58.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
| 663 |
+
"model.layers.58.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
| 664 |
+
"model.layers.58.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
| 665 |
+
"model.layers.58.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
| 666 |
+
"model.layers.58.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
| 667 |
+
"model.layers.58.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
| 668 |
+
"model.layers.59.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 669 |
+
"model.layers.59.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
| 670 |
+
"model.layers.59.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
| 671 |
+
"model.layers.59.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
| 672 |
+
"model.layers.59.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 673 |
+
"model.layers.59.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
| 674 |
+
"model.layers.59.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
| 675 |
+
"model.layers.59.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
| 676 |
+
"model.layers.59.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
| 677 |
+
"model.layers.59.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
| 678 |
+
"model.layers.59.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
| 679 |
+
"model.layers.59.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
| 680 |
+
"model.layers.6.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
| 681 |
+
"model.layers.6.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
| 682 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
| 683 |
+
"model.layers.6.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
| 684 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 685 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
| 686 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
| 687 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00014-of-00014.safetensors",
|
| 688 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
| 689 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00014-of-00014.safetensors",
|
| 690 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
| 691 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
| 692 |
+
"model.layers.60.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
| 693 |
+
"model.layers.60.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
| 694 |
+
"model.layers.60.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
| 695 |
+
"model.layers.60.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
| 696 |
+
"model.layers.60.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
| 697 |
+
"model.layers.60.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
| 698 |
+
"model.layers.60.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
| 699 |
+
"model.layers.60.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
| 700 |
+
"model.layers.60.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
| 701 |
+
"model.layers.60.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
| 702 |
+
"model.layers.60.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
| 703 |
+
"model.layers.60.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
| 704 |
+
"model.layers.61.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
| 705 |
+
"model.layers.61.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
| 706 |
+
"model.layers.61.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
| 707 |
+
"model.layers.61.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
| 708 |
+
"model.layers.61.post_attention_layernorm.weight": "model-00014-of-00014.safetensors",
|
| 709 |
+
"model.layers.61.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
| 710 |
+
"model.layers.61.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
| 711 |
+
"model.layers.61.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
| 712 |
+
"model.layers.61.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
| 713 |
+
"model.layers.61.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
| 714 |
+
"model.layers.61.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
| 715 |
+
"model.layers.61.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
| 716 |
+
"model.layers.62.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
| 717 |
+
"model.layers.62.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
| 718 |
+
"model.layers.62.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
| 719 |
+
"model.layers.62.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
| 720 |
+
"model.layers.62.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
| 721 |
+
"model.layers.62.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
| 722 |
+
"model.layers.62.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
| 723 |
+
"model.layers.62.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
| 724 |
+
"model.layers.62.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
| 725 |
+
"model.layers.62.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
| 726 |
+
"model.layers.62.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
| 727 |
+
"model.layers.62.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
| 728 |
+
"model.layers.63.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
| 729 |
+
"model.layers.63.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
| 730 |
+
"model.layers.63.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
| 731 |
+
"model.layers.63.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
| 732 |
+
"model.layers.63.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
| 733 |
+
"model.layers.63.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
| 734 |
+
"model.layers.63.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
| 735 |
+
"model.layers.63.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
| 736 |
+
"model.layers.63.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
| 737 |
+
"model.layers.63.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
| 738 |
+
"model.layers.63.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
| 739 |
+
"model.layers.63.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
| 740 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 741 |
+
"model.layers.7.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
| 742 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
| 743 |
+
"model.layers.7.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
| 744 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
| 745 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
| 746 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
| 747 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
| 748 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
|
| 749 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
| 750 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
| 751 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
| 752 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
| 753 |
+
"model.layers.8.mlp.down_proj.weight": "model-00014-of-00014.safetensors",
|
| 754 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
| 755 |
+
"model.layers.8.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
| 756 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
| 757 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
| 758 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00014-of-00014.safetensors",
|
| 759 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
| 760 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
| 761 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
| 762 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
| 763 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
| 764 |
+
"model.layers.9.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
| 765 |
+
"model.layers.9.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
| 766 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
| 767 |
+
"model.layers.9.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
| 768 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
| 769 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
| 770 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
| 771 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
| 772 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
| 773 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
| 774 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
| 775 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
| 776 |
+
"model.norm.weight": "model-00003-of-00014.safetensors",
|
| 777 |
+
"visual.blocks.0.attn.proj.bias": "model-00004-of-00014.safetensors",
|
| 778 |
+
"visual.blocks.0.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 779 |
+
"visual.blocks.0.attn.qkv.bias": "model-00004-of-00014.safetensors",
|
| 780 |
+
"visual.blocks.0.attn.qkv.weight": "model-00003-of-00014.safetensors",
|
| 781 |
+
"visual.blocks.0.mlp.down_proj.bias": "model-00013-of-00014.safetensors",
|
| 782 |
+
"visual.blocks.0.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
| 783 |
+
"visual.blocks.0.mlp.gate_proj.bias": "model-00005-of-00014.safetensors",
|
| 784 |
+
"visual.blocks.0.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 785 |
+
"visual.blocks.0.mlp.up_proj.bias": "model-00002-of-00014.safetensors",
|
| 786 |
+
"visual.blocks.0.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
| 787 |
+
"visual.blocks.0.norm1.weight": "model-00009-of-00014.safetensors",
|
| 788 |
+
"visual.blocks.0.norm2.weight": "model-00001-of-00014.safetensors",
|
| 789 |
+
"visual.blocks.1.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 790 |
+
"visual.blocks.1.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 791 |
+
"visual.blocks.1.attn.qkv.bias": "model-00003-of-00014.safetensors",
|
| 792 |
+
"visual.blocks.1.attn.qkv.weight": "model-00014-of-00014.safetensors",
|
| 793 |
+
"visual.blocks.1.mlp.down_proj.bias": "model-00002-of-00014.safetensors",
|
| 794 |
+
"visual.blocks.1.mlp.down_proj.weight": "model-00014-of-00014.safetensors",
|
| 795 |
+
"visual.blocks.1.mlp.gate_proj.bias": "model-00010-of-00014.safetensors",
|
| 796 |
+
"visual.blocks.1.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 797 |
+
"visual.blocks.1.mlp.up_proj.bias": "model-00014-of-00014.safetensors",
|
| 798 |
+
"visual.blocks.1.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
| 799 |
+
"visual.blocks.1.norm1.weight": "model-00010-of-00014.safetensors",
|
| 800 |
+
"visual.blocks.1.norm2.weight": "model-00004-of-00014.safetensors",
|
| 801 |
+
"visual.blocks.10.attn.proj.bias": "model-00014-of-00014.safetensors",
|
| 802 |
+
"visual.blocks.10.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 803 |
+
"visual.blocks.10.attn.qkv.bias": "model-00010-of-00014.safetensors",
|
| 804 |
+
"visual.blocks.10.attn.qkv.weight": "model-00013-of-00014.safetensors",
|
| 805 |
+
"visual.blocks.10.mlp.down_proj.bias": "model-00012-of-00014.safetensors",
|
| 806 |
+
"visual.blocks.10.mlp.down_proj.weight": "model-00014-of-00014.safetensors",
|
| 807 |
+
"visual.blocks.10.mlp.gate_proj.bias": "model-00014-of-00014.safetensors",
|
| 808 |
+
"visual.blocks.10.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
| 809 |
+
"visual.blocks.10.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 810 |
+
"visual.blocks.10.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
| 811 |
+
"visual.blocks.10.norm1.weight": "model-00010-of-00014.safetensors",
|
| 812 |
+
"visual.blocks.10.norm2.weight": "model-00014-of-00014.safetensors",
|
| 813 |
+
"visual.blocks.11.attn.proj.bias": "model-00006-of-00014.safetensors",
|
| 814 |
+
"visual.blocks.11.attn.proj.weight": "model-00011-of-00014.safetensors",
|
| 815 |
+
"visual.blocks.11.attn.qkv.bias": "model-00006-of-00014.safetensors",
|
| 816 |
+
"visual.blocks.11.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 817 |
+
"visual.blocks.11.mlp.down_proj.bias": "model-00009-of-00014.safetensors",
|
| 818 |
+
"visual.blocks.11.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
| 819 |
+
"visual.blocks.11.mlp.gate_proj.bias": "model-00011-of-00014.safetensors",
|
| 820 |
+
"visual.blocks.11.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
| 821 |
+
"visual.blocks.11.mlp.up_proj.bias": "model-00006-of-00014.safetensors",
|
| 822 |
+
"visual.blocks.11.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
| 823 |
+
"visual.blocks.11.norm1.weight": "model-00003-of-00014.safetensors",
|
| 824 |
+
"visual.blocks.11.norm2.weight": "model-00010-of-00014.safetensors",
|
| 825 |
+
"visual.blocks.12.attn.proj.bias": "model-00014-of-00014.safetensors",
|
| 826 |
+
"visual.blocks.12.attn.proj.weight": "model-00013-of-00014.safetensors",
|
| 827 |
+
"visual.blocks.12.attn.qkv.bias": "model-00003-of-00014.safetensors",
|
| 828 |
+
"visual.blocks.12.attn.qkv.weight": "model-00010-of-00014.safetensors",
|
| 829 |
+
"visual.blocks.12.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 830 |
+
"visual.blocks.12.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
| 831 |
+
"visual.blocks.12.mlp.gate_proj.bias": "model-00005-of-00014.safetensors",
|
| 832 |
+
"visual.blocks.12.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
| 833 |
+
"visual.blocks.12.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 834 |
+
"visual.blocks.12.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
| 835 |
+
"visual.blocks.12.norm1.weight": "model-00013-of-00014.safetensors",
|
| 836 |
+
"visual.blocks.12.norm2.weight": "model-00003-of-00014.safetensors",
|
| 837 |
+
"visual.blocks.13.attn.proj.bias": "model-00012-of-00014.safetensors",
|
| 838 |
+
"visual.blocks.13.attn.proj.weight": "model-00003-of-00014.safetensors",
|
| 839 |
+
"visual.blocks.13.attn.qkv.bias": "model-00008-of-00014.safetensors",
|
| 840 |
+
"visual.blocks.13.attn.qkv.weight": "model-00003-of-00014.safetensors",
|
| 841 |
+
"visual.blocks.13.mlp.down_proj.bias": "model-00014-of-00014.safetensors",
|
| 842 |
+
"visual.blocks.13.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
| 843 |
+
"visual.blocks.13.mlp.gate_proj.bias": "model-00012-of-00014.safetensors",
|
| 844 |
+
"visual.blocks.13.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
| 845 |
+
"visual.blocks.13.mlp.up_proj.bias": "model-00013-of-00014.safetensors",
|
| 846 |
+
"visual.blocks.13.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 847 |
+
"visual.blocks.13.norm1.weight": "model-00003-of-00014.safetensors",
|
| 848 |
+
"visual.blocks.13.norm2.weight": "model-00014-of-00014.safetensors",
|
| 849 |
+
"visual.blocks.14.attn.proj.bias": "model-00004-of-00014.safetensors",
|
| 850 |
+
"visual.blocks.14.attn.proj.weight": "model-00013-of-00014.safetensors",
|
| 851 |
+
"visual.blocks.14.attn.qkv.bias": "model-00009-of-00014.safetensors",
|
| 852 |
+
"visual.blocks.14.attn.qkv.weight": "model-00001-of-00014.safetensors",
|
| 853 |
+
"visual.blocks.14.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 854 |
+
"visual.blocks.14.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
| 855 |
+
"visual.blocks.14.mlp.gate_proj.bias": "model-00009-of-00014.safetensors",
|
| 856 |
+
"visual.blocks.14.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
| 857 |
+
"visual.blocks.14.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 858 |
+
"visual.blocks.14.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
| 859 |
+
"visual.blocks.14.norm1.weight": "model-00003-of-00014.safetensors",
|
| 860 |
+
"visual.blocks.14.norm2.weight": "model-00011-of-00014.safetensors",
|
| 861 |
+
"visual.blocks.15.attn.proj.bias": "model-00010-of-00014.safetensors",
|
| 862 |
+
"visual.blocks.15.attn.proj.weight": "model-00009-of-00014.safetensors",
|
| 863 |
+
"visual.blocks.15.attn.qkv.bias": "model-00006-of-00014.safetensors",
|
| 864 |
+
"visual.blocks.15.attn.qkv.weight": "model-00009-of-00014.safetensors",
|
| 865 |
+
"visual.blocks.15.mlp.down_proj.bias": "model-00003-of-00014.safetensors",
|
| 866 |
+
"visual.blocks.15.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
| 867 |
+
"visual.blocks.15.mlp.gate_proj.bias": "model-00005-of-00014.safetensors",
|
| 868 |
+
"visual.blocks.15.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
| 869 |
+
"visual.blocks.15.mlp.up_proj.bias": "model-00012-of-00014.safetensors",
|
| 870 |
+
"visual.blocks.15.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
| 871 |
+
"visual.blocks.15.norm1.weight": "model-00010-of-00014.safetensors",
|
| 872 |
+
"visual.blocks.15.norm2.weight": "model-00012-of-00014.safetensors",
|
| 873 |
+
"visual.blocks.16.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 874 |
+
"visual.blocks.16.attn.proj.weight": "model-00012-of-00014.safetensors",
|
| 875 |
+
"visual.blocks.16.attn.qkv.bias": "model-00009-of-00014.safetensors",
|
| 876 |
+
"visual.blocks.16.attn.qkv.weight": "model-00011-of-00014.safetensors",
|
| 877 |
+
"visual.blocks.16.mlp.down_proj.bias": "model-00004-of-00014.safetensors",
|
| 878 |
+
"visual.blocks.16.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
| 879 |
+
"visual.blocks.16.mlp.gate_proj.bias": "model-00013-of-00014.safetensors",
|
| 880 |
+
"visual.blocks.16.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
| 881 |
+
"visual.blocks.16.mlp.up_proj.bias": "model-00007-of-00014.safetensors",
|
| 882 |
+
"visual.blocks.16.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
| 883 |
+
"visual.blocks.16.norm1.weight": "model-00001-of-00014.safetensors",
|
| 884 |
+
"visual.blocks.16.norm2.weight": "model-00014-of-00014.safetensors",
|
| 885 |
+
"visual.blocks.17.attn.proj.bias": "model-00004-of-00014.safetensors",
|
| 886 |
+
"visual.blocks.17.attn.proj.weight": "model-00004-of-00014.safetensors",
|
| 887 |
+
"visual.blocks.17.attn.qkv.bias": "model-00013-of-00014.safetensors",
|
| 888 |
+
"visual.blocks.17.attn.qkv.weight": "model-00012-of-00014.safetensors",
|
| 889 |
+
"visual.blocks.17.mlp.down_proj.bias": "model-00003-of-00014.safetensors",
|
| 890 |
+
"visual.blocks.17.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
| 891 |
+
"visual.blocks.17.mlp.gate_proj.bias": "model-00009-of-00014.safetensors",
|
| 892 |
+
"visual.blocks.17.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
| 893 |
+
"visual.blocks.17.mlp.up_proj.bias": "model-00010-of-00014.safetensors",
|
| 894 |
+
"visual.blocks.17.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
| 895 |
+
"visual.blocks.17.norm1.weight": "model-00001-of-00014.safetensors",
|
| 896 |
+
"visual.blocks.17.norm2.weight": "model-00007-of-00014.safetensors",
|
| 897 |
+
"visual.blocks.18.attn.proj.bias": "model-00009-of-00014.safetensors",
|
| 898 |
+
"visual.blocks.18.attn.proj.weight": "model-00003-of-00014.safetensors",
|
| 899 |
+
"visual.blocks.18.attn.qkv.bias": "model-00011-of-00014.safetensors",
|
| 900 |
+
"visual.blocks.18.attn.qkv.weight": "model-00012-of-00014.safetensors",
|
| 901 |
+
"visual.blocks.18.mlp.down_proj.bias": "model-00006-of-00014.safetensors",
|
| 902 |
+
"visual.blocks.18.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
| 903 |
+
"visual.blocks.18.mlp.gate_proj.bias": "model-00004-of-00014.safetensors",
|
| 904 |
+
"visual.blocks.18.mlp.gate_proj.weight": "model-00014-of-00014.safetensors",
|
| 905 |
+
"visual.blocks.18.mlp.up_proj.bias": "model-00008-of-00014.safetensors",
|
| 906 |
+
"visual.blocks.18.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
| 907 |
+
"visual.blocks.18.norm1.weight": "model-00014-of-00014.safetensors",
|
| 908 |
+
"visual.blocks.18.norm2.weight": "model-00003-of-00014.safetensors",
|
| 909 |
+
"visual.blocks.19.attn.proj.bias": "model-00003-of-00014.safetensors",
|
| 910 |
+
"visual.blocks.19.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 911 |
+
"visual.blocks.19.attn.qkv.bias": "model-00014-of-00014.safetensors",
|
| 912 |
+
"visual.blocks.19.attn.qkv.weight": "model-00004-of-00014.safetensors",
|
| 913 |
+
"visual.blocks.19.mlp.down_proj.bias": "model-00010-of-00014.safetensors",
|
| 914 |
+
"visual.blocks.19.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
| 915 |
+
"visual.blocks.19.mlp.gate_proj.bias": "model-00010-of-00014.safetensors",
|
| 916 |
+
"visual.blocks.19.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
| 917 |
+
"visual.blocks.19.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 918 |
+
"visual.blocks.19.mlp.up_proj.weight": "model-00014-of-00014.safetensors",
|
| 919 |
+
"visual.blocks.19.norm1.weight": "model-00006-of-00014.safetensors",
|
| 920 |
+
"visual.blocks.19.norm2.weight": "model-00005-of-00014.safetensors",
|
| 921 |
+
"visual.blocks.2.attn.proj.bias": "model-00014-of-00014.safetensors",
|
| 922 |
+
"visual.blocks.2.attn.proj.weight": "model-00004-of-00014.safetensors",
|
| 923 |
+
"visual.blocks.2.attn.qkv.bias": "model-00005-of-00014.safetensors",
|
| 924 |
+
"visual.blocks.2.attn.qkv.weight": "model-00007-of-00014.safetensors",
|
| 925 |
+
"visual.blocks.2.mlp.down_proj.bias": "model-00010-of-00014.safetensors",
|
| 926 |
+
"visual.blocks.2.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
| 927 |
+
"visual.blocks.2.mlp.gate_proj.bias": "model-00014-of-00014.safetensors",
|
| 928 |
+
"visual.blocks.2.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
| 929 |
+
"visual.blocks.2.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 930 |
+
"visual.blocks.2.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
| 931 |
+
"visual.blocks.2.norm1.weight": "model-00008-of-00014.safetensors",
|
| 932 |
+
"visual.blocks.2.norm2.weight": "model-00010-of-00014.safetensors",
|
| 933 |
+
"visual.blocks.20.attn.proj.bias": "model-00010-of-00014.safetensors",
|
| 934 |
+
"visual.blocks.20.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 935 |
+
"visual.blocks.20.attn.qkv.bias": "model-00010-of-00014.safetensors",
|
| 936 |
+
"visual.blocks.20.attn.qkv.weight": "model-00003-of-00014.safetensors",
|
| 937 |
+
"visual.blocks.20.mlp.down_proj.bias": "model-00012-of-00014.safetensors",
|
| 938 |
+
"visual.blocks.20.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
| 939 |
+
"visual.blocks.20.mlp.gate_proj.bias": "model-00005-of-00014.safetensors",
|
| 940 |
+
"visual.blocks.20.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
| 941 |
+
"visual.blocks.20.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 942 |
+
"visual.blocks.20.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 943 |
+
"visual.blocks.20.norm1.weight": "model-00005-of-00014.safetensors",
|
| 944 |
+
"visual.blocks.20.norm2.weight": "model-00006-of-00014.safetensors",
|
| 945 |
+
"visual.blocks.21.attn.proj.bias": "model-00009-of-00014.safetensors",
|
| 946 |
+
"visual.blocks.21.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 947 |
+
"visual.blocks.21.attn.qkv.bias": "model-00007-of-00014.safetensors",
|
| 948 |
+
"visual.blocks.21.attn.qkv.weight": "model-00007-of-00014.safetensors",
|
| 949 |
+
"visual.blocks.21.mlp.down_proj.bias": "model-00013-of-00014.safetensors",
|
| 950 |
+
"visual.blocks.21.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 951 |
+
"visual.blocks.21.mlp.gate_proj.bias": "model-00010-of-00014.safetensors",
|
| 952 |
+
"visual.blocks.21.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
| 953 |
+
"visual.blocks.21.mlp.up_proj.bias": "model-00010-of-00014.safetensors",
|
| 954 |
+
"visual.blocks.21.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
| 955 |
+
"visual.blocks.21.norm1.weight": "model-00010-of-00014.safetensors",
|
| 956 |
+
"visual.blocks.21.norm2.weight": "model-00001-of-00014.safetensors",
|
| 957 |
+
"visual.blocks.22.attn.proj.bias": "model-00006-of-00014.safetensors",
|
| 958 |
+
"visual.blocks.22.attn.proj.weight": "model-00010-of-00014.safetensors",
|
| 959 |
+
"visual.blocks.22.attn.qkv.bias": "model-00007-of-00014.safetensors",
|
| 960 |
+
"visual.blocks.22.attn.qkv.weight": "model-00010-of-00014.safetensors",
|
| 961 |
+
"visual.blocks.22.mlp.down_proj.bias": "model-00005-of-00014.safetensors",
|
| 962 |
+
"visual.blocks.22.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
| 963 |
+
"visual.blocks.22.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 964 |
+
"visual.blocks.22.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
| 965 |
+
"visual.blocks.22.mlp.up_proj.bias": "model-00014-of-00014.safetensors",
|
| 966 |
+
"visual.blocks.22.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
| 967 |
+
"visual.blocks.22.norm1.weight": "model-00007-of-00014.safetensors",
|
| 968 |
+
"visual.blocks.22.norm2.weight": "model-00001-of-00014.safetensors",
|
| 969 |
+
"visual.blocks.23.attn.proj.bias": "model-00010-of-00014.safetensors",
|
| 970 |
+
"visual.blocks.23.attn.proj.weight": "model-00013-of-00014.safetensors",
|
| 971 |
+
"visual.blocks.23.attn.qkv.bias": "model-00007-of-00014.safetensors",
|
| 972 |
+
"visual.blocks.23.attn.qkv.weight": "model-00010-of-00014.safetensors",
|
| 973 |
+
"visual.blocks.23.mlp.down_proj.bias": "model-00003-of-00014.safetensors",
|
| 974 |
+
"visual.blocks.23.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
| 975 |
+
"visual.blocks.23.mlp.gate_proj.bias": "model-00007-of-00014.safetensors",
|
| 976 |
+
"visual.blocks.23.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
| 977 |
+
"visual.blocks.23.mlp.up_proj.bias": "model-00004-of-00014.safetensors",
|
| 978 |
+
"visual.blocks.23.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
| 979 |
+
"visual.blocks.23.norm1.weight": "model-00011-of-00014.safetensors",
|
| 980 |
+
"visual.blocks.23.norm2.weight": "model-00005-of-00014.safetensors",
|
| 981 |
+
"visual.blocks.24.attn.proj.bias": "model-00008-of-00014.safetensors",
|
| 982 |
+
"visual.blocks.24.attn.proj.weight": "model-00002-of-00014.safetensors",
|
| 983 |
+
"visual.blocks.24.attn.qkv.bias": "model-00012-of-00014.safetensors",
|
| 984 |
+
"visual.blocks.24.attn.qkv.weight": "model-00007-of-00014.safetensors",
|
| 985 |
+
"visual.blocks.24.mlp.down_proj.bias": "model-00003-of-00014.safetensors",
|
| 986 |
+
"visual.blocks.24.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
| 987 |
+
"visual.blocks.24.mlp.gate_proj.bias": "model-00005-of-00014.safetensors",
|
| 988 |
+
"visual.blocks.24.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 989 |
+
"visual.blocks.24.mlp.up_proj.bias": "model-00013-of-00014.safetensors",
|
| 990 |
+
"visual.blocks.24.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
| 991 |
+
"visual.blocks.24.norm1.weight": "model-00004-of-00014.safetensors",
|
| 992 |
+
"visual.blocks.24.norm2.weight": "model-00012-of-00014.safetensors",
|
| 993 |
+
"visual.blocks.25.attn.proj.bias": "model-00005-of-00014.safetensors",
|
| 994 |
+
"visual.blocks.25.attn.proj.weight": "model-00010-of-00014.safetensors",
|
| 995 |
+
"visual.blocks.25.attn.qkv.bias": "model-00007-of-00014.safetensors",
|
| 996 |
+
"visual.blocks.25.attn.qkv.weight": "model-00003-of-00014.safetensors",
|
| 997 |
+
"visual.blocks.25.mlp.down_proj.bias": "model-00006-of-00014.safetensors",
|
| 998 |
+
"visual.blocks.25.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
| 999 |
+
"visual.blocks.25.mlp.gate_proj.bias": "model-00002-of-00014.safetensors",
|
| 1000 |
+
"visual.blocks.25.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
| 1001 |
+
"visual.blocks.25.mlp.up_proj.bias": "model-00004-of-00014.safetensors",
|
| 1002 |
+
"visual.blocks.25.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
| 1003 |
+
"visual.blocks.25.norm1.weight": "model-00014-of-00014.safetensors",
|
| 1004 |
+
"visual.blocks.25.norm2.weight": "model-00010-of-00014.safetensors",
|
| 1005 |
+
"visual.blocks.26.attn.proj.bias": "model-00010-of-00014.safetensors",
|
| 1006 |
+
"visual.blocks.26.attn.proj.weight": "model-00009-of-00014.safetensors",
|
| 1007 |
+
"visual.blocks.26.attn.qkv.bias": "model-00003-of-00014.safetensors",
|
| 1008 |
+
"visual.blocks.26.attn.qkv.weight": "model-00011-of-00014.safetensors",
|
| 1009 |
+
"visual.blocks.26.mlp.down_proj.bias": "model-00009-of-00014.safetensors",
|
| 1010 |
+
"visual.blocks.26.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 1011 |
+
"visual.blocks.26.mlp.gate_proj.bias": "model-00012-of-00014.safetensors",
|
| 1012 |
+
"visual.blocks.26.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
| 1013 |
+
"visual.blocks.26.mlp.up_proj.bias": "model-00011-of-00014.safetensors",
|
| 1014 |
+
"visual.blocks.26.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
| 1015 |
+
"visual.blocks.26.norm1.weight": "model-00005-of-00014.safetensors",
|
| 1016 |
+
"visual.blocks.26.norm2.weight": "model-00006-of-00014.safetensors",
|
| 1017 |
+
"visual.blocks.27.attn.proj.bias": "model-00007-of-00014.safetensors",
|
| 1018 |
+
"visual.blocks.27.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 1019 |
+
"visual.blocks.27.attn.qkv.bias": "model-00005-of-00014.safetensors",
|
| 1020 |
+
"visual.blocks.27.attn.qkv.weight": "model-00012-of-00014.safetensors",
|
| 1021 |
+
"visual.blocks.27.mlp.down_proj.bias": "model-00010-of-00014.safetensors",
|
| 1022 |
+
"visual.blocks.27.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
| 1023 |
+
"visual.blocks.27.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 1024 |
+
"visual.blocks.27.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
| 1025 |
+
"visual.blocks.27.mlp.up_proj.bias": "model-00003-of-00014.safetensors",
|
| 1026 |
+
"visual.blocks.27.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 1027 |
+
"visual.blocks.27.norm1.weight": "model-00004-of-00014.safetensors",
|
| 1028 |
+
"visual.blocks.27.norm2.weight": "model-00002-of-00014.safetensors",
|
| 1029 |
+
"visual.blocks.28.attn.proj.bias": "model-00006-of-00014.safetensors",
|
| 1030 |
+
"visual.blocks.28.attn.proj.weight": "model-00009-of-00014.safetensors",
|
| 1031 |
+
"visual.blocks.28.attn.qkv.bias": "model-00010-of-00014.safetensors",
|
| 1032 |
+
"visual.blocks.28.attn.qkv.weight": "model-00014-of-00014.safetensors",
|
| 1033 |
+
"visual.blocks.28.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 1034 |
+
"visual.blocks.28.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
| 1035 |
+
"visual.blocks.28.mlp.gate_proj.bias": "model-00013-of-00014.safetensors",
|
| 1036 |
+
"visual.blocks.28.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
| 1037 |
+
"visual.blocks.28.mlp.up_proj.bias": "model-00002-of-00014.safetensors",
|
| 1038 |
+
"visual.blocks.28.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 1039 |
+
"visual.blocks.28.norm1.weight": "model-00003-of-00014.safetensors",
|
| 1040 |
+
"visual.blocks.28.norm2.weight": "model-00013-of-00014.safetensors",
|
| 1041 |
+
"visual.blocks.29.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 1042 |
+
"visual.blocks.29.attn.proj.weight": "model-00013-of-00014.safetensors",
|
| 1043 |
+
"visual.blocks.29.attn.qkv.bias": "model-00012-of-00014.safetensors",
|
| 1044 |
+
"visual.blocks.29.attn.qkv.weight": "model-00011-of-00014.safetensors",
|
| 1045 |
+
"visual.blocks.29.mlp.down_proj.bias": "model-00008-of-00014.safetensors",
|
| 1046 |
+
"visual.blocks.29.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
| 1047 |
+
"visual.blocks.29.mlp.gate_proj.bias": "model-00007-of-00014.safetensors",
|
| 1048 |
+
"visual.blocks.29.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
| 1049 |
+
"visual.blocks.29.mlp.up_proj.bias": "model-00006-of-00014.safetensors",
|
| 1050 |
+
"visual.blocks.29.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
| 1051 |
+
"visual.blocks.29.norm1.weight": "model-00013-of-00014.safetensors",
|
| 1052 |
+
"visual.blocks.29.norm2.weight": "model-00004-of-00014.safetensors",
|
| 1053 |
+
"visual.blocks.3.attn.proj.bias": "model-00002-of-00014.safetensors",
|
| 1054 |
+
"visual.blocks.3.attn.proj.weight": "model-00001-of-00014.safetensors",
|
| 1055 |
+
"visual.blocks.3.attn.qkv.bias": "model-00001-of-00014.safetensors",
|
| 1056 |
+
"visual.blocks.3.attn.qkv.weight": "model-00007-of-00014.safetensors",
|
| 1057 |
+
"visual.blocks.3.mlp.down_proj.bias": "model-00006-of-00014.safetensors",
|
| 1058 |
+
"visual.blocks.3.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
| 1059 |
+
"visual.blocks.3.mlp.gate_proj.bias": "model-00011-of-00014.safetensors",
|
| 1060 |
+
"visual.blocks.3.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
| 1061 |
+
"visual.blocks.3.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 1062 |
+
"visual.blocks.3.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 1063 |
+
"visual.blocks.3.norm1.weight": "model-00003-of-00014.safetensors",
|
| 1064 |
+
"visual.blocks.3.norm2.weight": "model-00004-of-00014.safetensors",
|
| 1065 |
+
"visual.blocks.30.attn.proj.bias": "model-00003-of-00014.safetensors",
|
| 1066 |
+
"visual.blocks.30.attn.proj.weight": "model-00006-of-00014.safetensors",
|
| 1067 |
+
"visual.blocks.30.attn.qkv.bias": "model-00003-of-00014.safetensors",
|
| 1068 |
+
"visual.blocks.30.attn.qkv.weight": "model-00003-of-00014.safetensors",
|
| 1069 |
+
"visual.blocks.30.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 1070 |
+
"visual.blocks.30.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
| 1071 |
+
"visual.blocks.30.mlp.gate_proj.bias": "model-00005-of-00014.safetensors",
|
| 1072 |
+
"visual.blocks.30.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
| 1073 |
+
"visual.blocks.30.mlp.up_proj.bias": "model-00010-of-00014.safetensors",
|
| 1074 |
+
"visual.blocks.30.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
| 1075 |
+
"visual.blocks.30.norm1.weight": "model-00002-of-00014.safetensors",
|
| 1076 |
+
"visual.blocks.30.norm2.weight": "model-00001-of-00014.safetensors",
|
| 1077 |
+
"visual.blocks.31.attn.proj.bias": "model-00013-of-00014.safetensors",
|
| 1078 |
+
"visual.blocks.31.attn.proj.weight": "model-00007-of-00014.safetensors",
|
| 1079 |
+
"visual.blocks.31.attn.qkv.bias": "model-00002-of-00014.safetensors",
|
| 1080 |
+
"visual.blocks.31.attn.qkv.weight": "model-00014-of-00014.safetensors",
|
| 1081 |
+
"visual.blocks.31.mlp.down_proj.bias": "model-00013-of-00014.safetensors",
|
| 1082 |
+
"visual.blocks.31.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
| 1083 |
+
"visual.blocks.31.mlp.gate_proj.bias": "model-00010-of-00014.safetensors",
|
| 1084 |
+
"visual.blocks.31.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
| 1085 |
+
"visual.blocks.31.mlp.up_proj.bias": "model-00002-of-00014.safetensors",
|
| 1086 |
+
"visual.blocks.31.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
| 1087 |
+
"visual.blocks.31.norm1.weight": "model-00001-of-00014.safetensors",
|
| 1088 |
+
"visual.blocks.31.norm2.weight": "model-00001-of-00014.safetensors",
|
| 1089 |
+
"visual.blocks.4.attn.proj.bias": "model-00013-of-00014.safetensors",
|
| 1090 |
+
"visual.blocks.4.attn.proj.weight": "model-00011-of-00014.safetensors",
|
| 1091 |
+
"visual.blocks.4.attn.qkv.bias": "model-00013-of-00014.safetensors",
|
| 1092 |
+
"visual.blocks.4.attn.qkv.weight": "model-00009-of-00014.safetensors",
|
| 1093 |
+
"visual.blocks.4.mlp.down_proj.bias": "model-00001-of-00014.safetensors",
|
| 1094 |
+
"visual.blocks.4.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
| 1095 |
+
"visual.blocks.4.mlp.gate_proj.bias": "model-00012-of-00014.safetensors",
|
| 1096 |
+
"visual.blocks.4.mlp.gate_proj.weight": "model-00014-of-00014.safetensors",
|
| 1097 |
+
"visual.blocks.4.mlp.up_proj.bias": "model-00007-of-00014.safetensors",
|
| 1098 |
+
"visual.blocks.4.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
| 1099 |
+
"visual.blocks.4.norm1.weight": "model-00005-of-00014.safetensors",
|
| 1100 |
+
"visual.blocks.4.norm2.weight": "model-00001-of-00014.safetensors",
|
| 1101 |
+
"visual.blocks.5.attn.proj.bias": "model-00003-of-00014.safetensors",
|
| 1102 |
+
"visual.blocks.5.attn.proj.weight": "model-00006-of-00014.safetensors",
|
| 1103 |
+
"visual.blocks.5.attn.qkv.bias": "model-00012-of-00014.safetensors",
|
| 1104 |
+
"visual.blocks.5.attn.qkv.weight": "model-00014-of-00014.safetensors",
|
| 1105 |
+
"visual.blocks.5.mlp.down_proj.bias": "model-00010-of-00014.safetensors",
|
| 1106 |
+
"visual.blocks.5.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
| 1107 |
+
"visual.blocks.5.mlp.gate_proj.bias": "model-00014-of-00014.safetensors",
|
| 1108 |
+
"visual.blocks.5.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
| 1109 |
+
"visual.blocks.5.mlp.up_proj.bias": "model-00001-of-00014.safetensors",
|
| 1110 |
+
"visual.blocks.5.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
| 1111 |
+
"visual.blocks.5.norm1.weight": "model-00009-of-00014.safetensors",
|
| 1112 |
+
"visual.blocks.5.norm2.weight": "model-00011-of-00014.safetensors",
|
| 1113 |
+
"visual.blocks.6.attn.proj.bias": "model-00001-of-00014.safetensors",
|
| 1114 |
+
"visual.blocks.6.attn.proj.weight": "model-00013-of-00014.safetensors",
|
| 1115 |
+
"visual.blocks.6.attn.qkv.bias": "model-00010-of-00014.safetensors",
|
| 1116 |
+
"visual.blocks.6.attn.qkv.weight": "model-00011-of-00014.safetensors",
|
| 1117 |
+
"visual.blocks.6.mlp.down_proj.bias": "model-00011-of-00014.safetensors",
|
| 1118 |
+
"visual.blocks.6.mlp.down_proj.weight": "model-00014-of-00014.safetensors",
|
| 1119 |
+
"visual.blocks.6.mlp.gate_proj.bias": "model-00011-of-00014.safetensors",
|
| 1120 |
+
"visual.blocks.6.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
| 1121 |
+
"visual.blocks.6.mlp.up_proj.bias": "model-00005-of-00014.safetensors",
|
| 1122 |
+
"visual.blocks.6.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
| 1123 |
+
"visual.blocks.6.norm1.weight": "model-00003-of-00014.safetensors",
|
| 1124 |
+
"visual.blocks.6.norm2.weight": "model-00004-of-00014.safetensors",
|
| 1125 |
+
"visual.blocks.7.attn.proj.bias": "model-00011-of-00014.safetensors",
|
| 1126 |
+
"visual.blocks.7.attn.proj.weight": "model-00007-of-00014.safetensors",
|
| 1127 |
+
"visual.blocks.7.attn.qkv.bias": "model-00004-of-00014.safetensors",
|
| 1128 |
+
"visual.blocks.7.attn.qkv.weight": "model-00009-of-00014.safetensors",
|
| 1129 |
+
"visual.blocks.7.mlp.down_proj.bias": "model-00005-of-00014.safetensors",
|
| 1130 |
+
"visual.blocks.7.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
| 1131 |
+
"visual.blocks.7.mlp.gate_proj.bias": "model-00009-of-00014.safetensors",
|
| 1132 |
+
"visual.blocks.7.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
| 1133 |
+
"visual.blocks.7.mlp.up_proj.bias": "model-00013-of-00014.safetensors",
|
| 1134 |
+
"visual.blocks.7.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
| 1135 |
+
"visual.blocks.7.norm1.weight": "model-00014-of-00014.safetensors",
|
| 1136 |
+
"visual.blocks.7.norm2.weight": "model-00004-of-00014.safetensors",
|
| 1137 |
+
"visual.blocks.8.attn.proj.bias": "model-00004-of-00014.safetensors",
|
| 1138 |
+
"visual.blocks.8.attn.proj.weight": "model-00006-of-00014.safetensors",
|
| 1139 |
+
"visual.blocks.8.attn.qkv.bias": "model-00004-of-00014.safetensors",
|
| 1140 |
+
"visual.blocks.8.attn.qkv.weight": "model-00012-of-00014.safetensors",
|
| 1141 |
+
"visual.blocks.8.mlp.down_proj.bias": "model-00005-of-00014.safetensors",
|
| 1142 |
+
"visual.blocks.8.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
| 1143 |
+
"visual.blocks.8.mlp.gate_proj.bias": "model-00003-of-00014.safetensors",
|
| 1144 |
+
"visual.blocks.8.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
| 1145 |
+
"visual.blocks.8.mlp.up_proj.bias": "model-00004-of-00014.safetensors",
|
| 1146 |
+
"visual.blocks.8.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
| 1147 |
+
"visual.blocks.8.norm1.weight": "model-00012-of-00014.safetensors",
|
| 1148 |
+
"visual.blocks.8.norm2.weight": "model-00005-of-00014.safetensors",
|
| 1149 |
+
"visual.blocks.9.attn.proj.bias": "model-00010-of-00014.safetensors",
|
| 1150 |
+
"visual.blocks.9.attn.proj.weight": "model-00012-of-00014.safetensors",
|
| 1151 |
+
"visual.blocks.9.attn.qkv.bias": "model-00003-of-00014.safetensors",
|
| 1152 |
+
"visual.blocks.9.attn.qkv.weight": "model-00009-of-00014.safetensors",
|
| 1153 |
+
"visual.blocks.9.mlp.down_proj.bias": "model-00010-of-00014.safetensors",
|
| 1154 |
+
"visual.blocks.9.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
| 1155 |
+
"visual.blocks.9.mlp.gate_proj.bias": "model-00001-of-00014.safetensors",
|
| 1156 |
+
"visual.blocks.9.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
| 1157 |
+
"visual.blocks.9.mlp.up_proj.bias": "model-00003-of-00014.safetensors",
|
| 1158 |
+
"visual.blocks.9.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
| 1159 |
+
"visual.blocks.9.norm1.weight": "model-00014-of-00014.safetensors",
|
| 1160 |
+
"visual.blocks.9.norm2.weight": "model-00013-of-00014.safetensors",
|
| 1161 |
+
"visual.merger.ln_q.weight": "model-00012-of-00014.safetensors",
|
| 1162 |
+
"visual.merger.mlp.0.bias": "model-00011-of-00014.safetensors",
|
| 1163 |
+
"visual.merger.mlp.0.weight": "model-00013-of-00014.safetensors",
|
| 1164 |
+
"visual.merger.mlp.2.bias": "model-00012-of-00014.safetensors",
|
| 1165 |
+
"visual.merger.mlp.2.weight": "model-00006-of-00014.safetensors",
|
| 1166 |
+
"visual.patch_embed.proj.weight": "model-00005-of-00014.safetensors"
|
| 1167 |
+
}
|
| 1168 |
+
}
|
modeling_opencua.py
ADDED
|
@@ -0,0 +1,449 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ------------------------------------------------------------------------------
|
| 2 |
+
# OpenCUA‑7B Model
|
| 3 |
+
#
|
| 4 |
+
# This implementation is adapted from the Qwen2‑VL reference code in
|
| 5 |
+
# Hugging Face Transformers v4.53.0:
|
| 6 |
+
# https://github.com/huggingface/transformers/tree/v4.53.0/src/transformers/models/qwen2_5_vl
|
| 7 |
+
#
|
| 8 |
+
# Checkpoint used for weight initialisation:
|
| 9 |
+
# "Qwen/Qwen2.5-VL-32B-Instruct" – https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
|
| 10 |
+
#
|
| 11 |
+
# Key modifications
|
| 12 |
+
# -----------------
|
| 13 |
+
# • Replaced Multimodal Rotary Position Embedding (M‑RoPE) with 1‑D RoPE for
|
| 14 |
+
# compatibility with OpenCUA training settings.
|
| 15 |
+
# • Wrapped vision encoder and language model into a single
|
| 16 |
+
# `OpenCUAForConditionalGeneration` class.
|
| 17 |
+
# • Simplified weight initialisation — this file targets inference / fine‑tuning,
|
| 18 |
+
# not training from scratch.
|
| 19 |
+
#
|
| 20 |
+
# Copyright (c) 2025 XLANG Lab, The University of Hong Kong
|
| 21 |
+
#
|
| 22 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 23 |
+
# of this software and associated documentation files (the “Software”), to deal
|
| 24 |
+
# in the Software without restriction, including without limitation the rights
|
| 25 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 26 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 27 |
+
# furnished to do so, subject to the following conditions:
|
| 28 |
+
#
|
| 29 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 30 |
+
# copies or substantial portions of the Software.
|
| 31 |
+
#
|
| 32 |
+
# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 33 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 34 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 35 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 36 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 37 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 38 |
+
# SOFTWARE.
|
| 39 |
+
#
|
| 40 |
+
# ------------------------------------------------------------------------------
|
| 41 |
+
# Prohibited Uses & Additional Disclaimer
|
| 42 |
+
# ---------------------------------------
|
| 43 |
+
# • The Software may **not** be used for any purpose or activity that violates
|
| 44 |
+
# applicable laws or regulations in any jurisdiction.
|
| 45 |
+
# • The authors, contributors, and copyright holders are **not responsible**
|
| 46 |
+
# for any illegal, unethical, or harmful use of the Software, nor for any
|
| 47 |
+
# direct or indirect damages resulting from such use.
|
| 48 |
+
# • Use of the “OpenCUA” name, logo, or trademarks does **not** imply any
|
| 49 |
+
# endorsement or affiliation unless a separate written permission is obtained.
|
| 50 |
+
|
| 51 |
+
import torch
|
| 52 |
+
import torch.nn as nn
|
| 53 |
+
from transformers.cache_utils import Cache
|
| 54 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 55 |
+
from transformers.models.llava.modeling_llava import LlavaCausalLMOutputWithPast
|
| 56 |
+
|
| 57 |
+
from .configuration_opencua import OpenCUAConfig
|
| 58 |
+
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import Qwen2_5_VisionTransformerPretrainedModel
|
| 59 |
+
from transformers.models.qwen2.modeling_qwen2 import Qwen2ForCausalLM
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class OpenCUAPreTrainedModel(PreTrainedModel):
|
| 63 |
+
config_class = OpenCUAConfig
|
| 64 |
+
base_model_prefix = "model"
|
| 65 |
+
_no_split_modules = ["Qwen2_5_VisionTransformerPretrainedModel"]
|
| 66 |
+
_skip_keys_device_placement = "past_key_values"
|
| 67 |
+
_supports_flash_attn_2 = True
|
| 68 |
+
|
| 69 |
+
def _init_weights(self, module):
|
| 70 |
+
# important: this ported version of Llava isn't meant for training from scratch - only
|
| 71 |
+
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase
|
| 72 |
+
# https://github.com/haotian-liu/LLaVA/tree/main/llava should serve for that purpose
|
| 73 |
+
std = (
|
| 74 |
+
self.config.initializer_range
|
| 75 |
+
if hasattr(self.config, "initializer_range")
|
| 76 |
+
else self.config.text_config.initializer_range
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
if hasattr(module, "class_embedding"):
|
| 80 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
| 81 |
+
|
| 82 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 83 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 84 |
+
if module.bias is not None:
|
| 85 |
+
module.bias.data.zero_()
|
| 86 |
+
elif isinstance(module, nn.Embedding):
|
| 87 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 88 |
+
if module.padding_idx is not None:
|
| 89 |
+
module.weight.data[module.padding_idx].zero_()
|
| 90 |
+
|
| 91 |
+
@property
|
| 92 |
+
def _supports_sdpa(self):
|
| 93 |
+
"""
|
| 94 |
+
Retrieve language_model's attribute to check whether the model supports
|
| 95 |
+
SDPA or not.
|
| 96 |
+
"""
|
| 97 |
+
return self.language_model._supports_sdpa
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
class OpenCUAForConditionalGeneration(OpenCUAPreTrainedModel):
|
| 101 |
+
|
| 102 |
+
def __init__(self, config: OpenCUAConfig):
|
| 103 |
+
super().__init__(config)
|
| 104 |
+
self.vision_tower = Qwen2_5_VisionTransformerPretrainedModel(config.vision_config)
|
| 105 |
+
self.language_model = Qwen2ForCausalLM(config.text_config)
|
| 106 |
+
self.post_init()
|
| 107 |
+
|
| 108 |
+
def get_input_embeddings(self):
|
| 109 |
+
return self.language_model.get_input_embeddings()
|
| 110 |
+
|
| 111 |
+
def set_input_embeddings(self, value):
|
| 112 |
+
self.language_model.set_input_embeddings(value)
|
| 113 |
+
|
| 114 |
+
def get_output_embeddings(self):
|
| 115 |
+
return self.language_model.get_output_embeddings()
|
| 116 |
+
|
| 117 |
+
def set_output_embeddings(self, new_embeddings):
|
| 118 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
| 119 |
+
|
| 120 |
+
def set_decoder(self, decoder):
|
| 121 |
+
self.language_model.set_decoder(decoder)
|
| 122 |
+
|
| 123 |
+
def get_decoder(self):
|
| 124 |
+
return self.language_model.get_decoder()
|
| 125 |
+
|
| 126 |
+
def tie_weights(self):
|
| 127 |
+
return self.language_model.tie_weights()
|
| 128 |
+
|
| 129 |
+
def resize_token_embeddings(self, new_num_tokens: int | None = None, pad_to_multiple_of=None) -> nn.Embedding:
|
| 130 |
+
model_embeds = self.language_model.resize_token_embeddings(
|
| 131 |
+
new_num_tokens, pad_to_multiple_of)
|
| 132 |
+
# update vocab size
|
| 133 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
| 134 |
+
self.vocab_size = model_embeds.num_embeddings
|
| 135 |
+
return model_embeds
|
| 136 |
+
|
| 137 |
+
def _merge_input_ids_with_image_features(
|
| 138 |
+
self,
|
| 139 |
+
image_features: torch.Tensor,
|
| 140 |
+
feature_lengths: list[int],
|
| 141 |
+
inputs_embeds: torch.Tensor,
|
| 142 |
+
input_ids: torch.Tensor,
|
| 143 |
+
attention_mask: torch.Tensor,
|
| 144 |
+
labels: torch.Tensor | None = None):
|
| 145 |
+
"""
|
| 146 |
+
Args:
|
| 147 |
+
image_features (:obj:`torch.Tensor` of shape :obj:`(num_image_tokens, embed_dim)`):
|
| 148 |
+
The image features to merge with the input embeddings.
|
| 149 |
+
feature_lengths: the length of image feature.
|
| 150 |
+
inputs_embeds (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length, embed_dim)`):
|
| 151 |
+
The input embeddings.
|
| 152 |
+
input_ids (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`):
|
| 153 |
+
The input ids.
|
| 154 |
+
attention_mask (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`):
|
| 155 |
+
The attention mask.
|
| 156 |
+
labels (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`, *optional*):
|
| 157 |
+
The labels.
|
| 158 |
+
"""
|
| 159 |
+
|
| 160 |
+
image_token_index: int = self.config.media_placeholder_token_id
|
| 161 |
+
pad_token_id: int = self.config.pad_token_id
|
| 162 |
+
ignore_index: int = self.config.ignore_index
|
| 163 |
+
|
| 164 |
+
_, embed_dim = image_features.shape
|
| 165 |
+
|
| 166 |
+
batch_size, sequence_length = input_ids.shape
|
| 167 |
+
left_padding = not torch.sum(
|
| 168 |
+
input_ids[:, -1] == torch.tensor(pad_token_id))
|
| 169 |
+
|
| 170 |
+
# 1. Create a mask to know where special image tokens are
|
| 171 |
+
_token_occupation_table = torch.ones_like(input_ids.flatten())
|
| 172 |
+
_token_occupation_table[input_ids.flatten() == image_token_index] = \
|
| 173 |
+
torch.tensor(feature_lengths,
|
| 174 |
+
dtype=torch.long, device=input_ids.device)
|
| 175 |
+
_token_occupation_table = _token_occupation_table.reshape(
|
| 176 |
+
input_ids.shape)
|
| 177 |
+
|
| 178 |
+
max_embed_dim = _token_occupation_table.sum(-1).max().item()
|
| 179 |
+
assert max_embed_dim >= sequence_length, (
|
| 180 |
+
f"The maximum embedding dimension ({max_embed_dim}) is less than the sequence length ({sequence_length})"
|
| 181 |
+
)
|
| 182 |
+
batch_indices, non_image_indices = torch.where(input_ids != image_token_index)
|
| 183 |
+
|
| 184 |
+
# 2. Compute the positions where text should be written
|
| 185 |
+
# Calculate new positions for text tokens in merged image-text sequence.
|
| 186 |
+
new_token_positions = torch.cumsum(_token_occupation_table, -1) - 1
|
| 187 |
+
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
|
| 188 |
+
if left_padding:
|
| 189 |
+
new_token_positions += nb_image_pad[:, None] # offset for left padding
|
| 190 |
+
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
|
| 191 |
+
|
| 192 |
+
# 3. Create the full embedding, already padded to the maximum position
|
| 193 |
+
final_embedding = torch.zeros(
|
| 194 |
+
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
| 195 |
+
)
|
| 196 |
+
final_attention_mask = torch.zeros(
|
| 197 |
+
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
|
| 198 |
+
)
|
| 199 |
+
if labels is not None:
|
| 200 |
+
final_labels = torch.full(
|
| 201 |
+
(batch_size, max_embed_dim), ignore_index, dtype=input_ids.dtype, device=input_ids.device
|
| 202 |
+
)
|
| 203 |
+
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
| 204 |
+
# set the corresponding tensors into their correct target device.
|
| 205 |
+
target_device = inputs_embeds.device
|
| 206 |
+
batch_indices, non_image_indices, text_to_overwrite = (
|
| 207 |
+
batch_indices.to(target_device),
|
| 208 |
+
non_image_indices.to(target_device),
|
| 209 |
+
text_to_overwrite.to(target_device),
|
| 210 |
+
)
|
| 211 |
+
attention_mask = attention_mask.to(target_device)
|
| 212 |
+
|
| 213 |
+
# 4. Fill the embeddings based on the mask.
|
| 214 |
+
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
|
| 215 |
+
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
|
| 216 |
+
if labels is not None:
|
| 217 |
+
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
|
| 218 |
+
|
| 219 |
+
# 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
|
| 220 |
+
image_to_overwrite = torch.full(
|
| 221 |
+
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
|
| 222 |
+
)
|
| 223 |
+
image_to_overwrite[batch_indices, text_to_overwrite] = False
|
| 224 |
+
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device)
|
| 225 |
+
|
| 226 |
+
if image_to_overwrite.sum() != image_features.shape[:-1].numel():
|
| 227 |
+
raise ValueError(
|
| 228 |
+
f"The input provided to the model are wrong. The number of image tokens is {image_to_overwrite.sum()} while"
|
| 229 |
+
f" the number of image features given to the model is {image_features.shape[:-1].numel()}. "
|
| 230 |
+
"This prevents correct indexing and breaks batch generation."
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
| 234 |
+
final_attention_mask |= image_to_overwrite
|
| 235 |
+
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
|
| 236 |
+
|
| 237 |
+
# 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens.
|
| 238 |
+
batch_indices, pad_indices = torch.where(input_ids == pad_token_id)
|
| 239 |
+
indices_to_mask = new_token_positions[batch_indices, pad_indices]
|
| 240 |
+
|
| 241 |
+
final_embedding[batch_indices, indices_to_mask] = 0
|
| 242 |
+
|
| 243 |
+
if labels is None:
|
| 244 |
+
final_labels = None
|
| 245 |
+
|
| 246 |
+
return final_embedding, final_attention_mask, final_labels, position_ids
|
| 247 |
+
|
| 248 |
+
def _extract_image_features(self,
|
| 249 |
+
pixel_values: torch.FloatTensor | list[torch.FloatTensor],
|
| 250 |
+
grid_thws: torch.FloatTensor,
|
| 251 |
+
):
|
| 252 |
+
"""
|
| 253 |
+
Args:
|
| 254 |
+
pixel_values (:obj:`torch.FloatTensor` of shape :obj:`(sum_num_image_tokens, channels)`):
|
| 255 |
+
The pixel values of the images processed by image processor.
|
| 256 |
+
grid_thws: (B,3)
|
| 257 |
+
|
| 258 |
+
Returns:
|
| 259 |
+
selected_image_feature (:obj:`torch.FloatTensor` of shape :obj:`(num_image_tokens, embed_dim)`):
|
| 260 |
+
The selected image features to use as input to the projector head.
|
| 261 |
+
|
| 262 |
+
"""
|
| 263 |
+
|
| 264 |
+
assert len(grid_thws.shape)==2 and grid_thws.shape[1]==3, f"grid_thws must be a 2D tensor with shape (batched, 3), but got {grid_thws.shape}"
|
| 265 |
+
if isinstance(pixel_values, list):
|
| 266 |
+
pixel_values = torch.cat(pixel_values, dim=0)
|
| 267 |
+
image_features_ = self.vision_tower(pixel_values, grid_thw=grid_thws)
|
| 268 |
+
image_features_list = []
|
| 269 |
+
start_idx = 0
|
| 270 |
+
for i, grid_thw in enumerate(grid_thws):
|
| 271 |
+
end_idx = start_idx + (grid_thw[0] * grid_thw[1] * grid_thw[2]) // 4
|
| 272 |
+
image_features_list.append(image_features_[start_idx:end_idx, :])
|
| 273 |
+
start_idx = end_idx
|
| 274 |
+
|
| 275 |
+
selected_image_feature = torch.cat(image_features_list, dim=0)
|
| 276 |
+
feature_lengths = [x.size(0) for x in image_features_list]
|
| 277 |
+
return selected_image_feature, feature_lengths
|
| 278 |
+
|
| 279 |
+
def forward(
|
| 280 |
+
self,
|
| 281 |
+
input_ids: torch.LongTensor | None = None,
|
| 282 |
+
pixel_values: torch.FloatTensor | list[torch.FloatTensor] | None = None,
|
| 283 |
+
grid_thws: torch.Tensor = None,
|
| 284 |
+
attention_mask: torch.Tensor | None = None,
|
| 285 |
+
position_ids: torch.LongTensor | None = None,
|
| 286 |
+
past_key_values: list[torch.FloatTensor] | None = None,
|
| 287 |
+
inputs_embeds: torch.FloatTensor | None = None,
|
| 288 |
+
labels: torch.LongTensor | None = None,
|
| 289 |
+
use_cache: bool | None = None,
|
| 290 |
+
output_attentions: bool | None = None,
|
| 291 |
+
output_hidden_states: bool | None = None,
|
| 292 |
+
return_dict: bool | None = None,
|
| 293 |
+
) -> tuple | LlavaCausalLMOutputWithPast:
|
| 294 |
+
r"""
|
| 295 |
+
Args:
|
| 296 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 297 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 298 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 299 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 300 |
+
|
| 301 |
+
```"""
|
| 302 |
+
|
| 303 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 304 |
+
output_hidden_states = (
|
| 305 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 306 |
+
)
|
| 307 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 308 |
+
if inputs_embeds is None:
|
| 309 |
+
# 1. Extra the input embeddings
|
| 310 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
| 311 |
+
# 2. Merge text and images
|
| 312 |
+
if pixel_values is not None and len(pixel_values) > 0 and input_ids.shape[1] != 1:
|
| 313 |
+
image_feature, feature_lengths = self._extract_image_features(
|
| 314 |
+
pixel_values, grid_thws)
|
| 315 |
+
|
| 316 |
+
inputs_embeds = inputs_embeds.to(image_feature.dtype) # num_tokens, embed_dim
|
| 317 |
+
inputs_embeds, attention_mask, labels, position_ids = \
|
| 318 |
+
self._merge_input_ids_with_image_features(image_feature, feature_lengths, inputs_embeds, input_ids, attention_mask, labels
|
| 319 |
+
)
|
| 320 |
+
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
|
| 321 |
+
# generation with cache
|
| 322 |
+
elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
|
| 323 |
+
# Retrieve the first layer to inspect the logits and mask out the hidden states
|
| 324 |
+
# that are set to 0
|
| 325 |
+
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
|
| 326 |
+
|
| 327 |
+
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
|
| 328 |
+
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
|
| 329 |
+
|
| 330 |
+
# Get the target length
|
| 331 |
+
target_length = input_ids.shape[1]
|
| 332 |
+
past_length = first_layer_past_key_value.shape[-1]
|
| 333 |
+
|
| 334 |
+
extended_attention_mask = torch.ones(
|
| 335 |
+
(attention_mask.shape[0], past_length),
|
| 336 |
+
dtype=attention_mask.dtype,
|
| 337 |
+
device=attention_mask.device,
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
# Filter out only the tokens that can be un-attended, this can happen
|
| 341 |
+
# if one uses Llava + Fused modules where the cache on the
|
| 342 |
+
# first iteration is already big enough, or if one passes custom cache
|
| 343 |
+
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
|
| 344 |
+
new_batch_index = batch_index[valid_indices]
|
| 345 |
+
new_non_attended_tokens = non_attended_tokens[valid_indices]
|
| 346 |
+
|
| 347 |
+
# Zero-out the places where we don't need to attend
|
| 348 |
+
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
|
| 349 |
+
|
| 350 |
+
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
|
| 351 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
| 352 |
+
|
| 353 |
+
outputs = self.language_model(
|
| 354 |
+
attention_mask=attention_mask,
|
| 355 |
+
position_ids=position_ids,
|
| 356 |
+
past_key_values=past_key_values,
|
| 357 |
+
inputs_embeds=inputs_embeds,
|
| 358 |
+
use_cache=use_cache,
|
| 359 |
+
output_attentions=output_attentions,
|
| 360 |
+
output_hidden_states=output_hidden_states,
|
| 361 |
+
return_dict=return_dict,
|
| 362 |
+
)
|
| 363 |
+
|
| 364 |
+
logits = outputs[0]
|
| 365 |
+
|
| 366 |
+
loss = None
|
| 367 |
+
if labels is not None:
|
| 368 |
+
# Shift so that tokens < n predict n
|
| 369 |
+
if attention_mask is not None:
|
| 370 |
+
shift_attention_mask = attention_mask[..., 1:]
|
| 371 |
+
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
|
| 372 |
+
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
|
| 373 |
+
else:
|
| 374 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 375 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 376 |
+
# Flatten the tokens
|
| 377 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 378 |
+
loss = loss_fct(
|
| 379 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
if not return_dict:
|
| 383 |
+
output = (logits,) + outputs[1:]
|
| 384 |
+
return (loss,) + output if loss is not None else output
|
| 385 |
+
|
| 386 |
+
return LlavaCausalLMOutputWithPast(
|
| 387 |
+
loss=loss,
|
| 388 |
+
logits=logits,
|
| 389 |
+
past_key_values=outputs.past_key_values,
|
| 390 |
+
hidden_states=outputs.hidden_states,
|
| 391 |
+
attentions=outputs.attentions,
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
def prepare_inputs_for_generation(
|
| 395 |
+
self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, grid_thws=None, attention_mask=None, **kwargs
|
| 396 |
+
):
|
| 397 |
+
if past_key_values is not None:
|
| 398 |
+
if isinstance(past_key_values, Cache):
|
| 399 |
+
cache_length = past_key_values.get_seq_length()
|
| 400 |
+
past_length = past_key_values.seen_tokens
|
| 401 |
+
else:
|
| 402 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
| 403 |
+
|
| 404 |
+
# Keep only the unprocessed tokens:
|
| 405 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
| 406 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
| 407 |
+
# input)
|
| 408 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
| 409 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
| 410 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
| 411 |
+
# input_ids based on the past_length.
|
| 412 |
+
elif past_length < input_ids.shape[1]:
|
| 413 |
+
input_ids = input_ids[:, past_length:]
|
| 414 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
| 415 |
+
elif self.config.media_placeholder_token_id in input_ids:
|
| 416 |
+
input_ids = input_ids[:, input_ids.shape[1] - 1 :]
|
| 417 |
+
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
|
| 418 |
+
# older attention values, as their corresponding values are not part of the input.
|
| 419 |
+
if cache_length < past_length and attention_mask is not None:
|
| 420 |
+
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
|
| 421 |
+
|
| 422 |
+
position_ids = kwargs.get("position_ids", None)
|
| 423 |
+
if attention_mask is not None and position_ids is None:
|
| 424 |
+
# create position_ids on the fly for batch generation
|
| 425 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 426 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 427 |
+
if past_key_values:
|
| 428 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 429 |
+
|
| 430 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 431 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 432 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 433 |
+
else:
|
| 434 |
+
model_inputs = {"input_ids": input_ids}
|
| 435 |
+
|
| 436 |
+
model_inputs.update(
|
| 437 |
+
{
|
| 438 |
+
"position_ids": position_ids,
|
| 439 |
+
"past_key_values": past_key_values,
|
| 440 |
+
"use_cache": kwargs.get("use_cache"),
|
| 441 |
+
"attention_mask": attention_mask,
|
| 442 |
+
"pixel_values": pixel_values,
|
| 443 |
+
"grid_thws": grid_thws,
|
| 444 |
+
}
|
| 445 |
+
)
|
| 446 |
+
return model_inputs
|
| 447 |
+
|
| 448 |
+
def _reorder_cache(self, *args, **kwargs):
|
| 449 |
+
return self.language_model._reorder_cache(*args, **kwargs)
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"min_pixels": 3136,
|
| 3 |
+
"max_pixels": 12845056,
|
| 4 |
+
"patch_size": 14,
|
| 5 |
+
"temporal_patch_size": 2,
|
| 6 |
+
"merge_size": 2,
|
| 7 |
+
"image_mean": [
|
| 8 |
+
0.48145466,
|
| 9 |
+
0.4578275,
|
| 10 |
+
0.40821073
|
| 11 |
+
],
|
| 12 |
+
"image_std": [
|
| 13 |
+
0.26862954,
|
| 14 |
+
0.26130258,
|
| 15 |
+
0.27577711
|
| 16 |
+
],
|
| 17 |
+
"image_processor_type": "Qwen2VLImageProcessor"
|
| 18 |
+
}
|
processing_opencua.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# processing_opencua.py
|
| 2 |
+
import torch
|
| 3 |
+
from typing import List, Dict, Any, Union
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from transformers.processing_utils import ProcessorMixin, BatchFeature
|
| 6 |
+
from transformers import AutoTokenizer, AutoImageProcessor
|
| 7 |
+
|
| 8 |
+
PLACEHOLDER = "<|media_placeholder|>"
|
| 9 |
+
|
| 10 |
+
class OpenCUAProcessor(ProcessorMixin):
|
| 11 |
+
attributes = ["image_processor", "tokenizer", "image_token_id", "merge_size"]
|
| 12 |
+
|
| 13 |
+
def __init__(self, image_processor, tokenizer, image_token_id: int = 151664, merge_size: int = 2, **kwargs):
|
| 14 |
+
self.image_processor = image_processor
|
| 15 |
+
self.tokenizer = tokenizer
|
| 16 |
+
self.image_token_id = image_token_id
|
| 17 |
+
self.merge_size = getattr(image_processor, "merge_size", merge_size)
|
| 18 |
+
|
| 19 |
+
@classmethod
|
| 20 |
+
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
| 21 |
+
trust = kwargs.get("trust_remote_code", True)
|
| 22 |
+
# 优先用你仓库的 TikTokenV3;失败回退 AutoTokenizer(只用于初始化/占位)
|
| 23 |
+
try:
|
| 24 |
+
from tokenization_opencua import TikTokenV3
|
| 25 |
+
tok = TikTokenV3.from_pretrained(pretrained_model_name_or_path, trust_remote_code=trust)
|
| 26 |
+
except Exception:
|
| 27 |
+
tok = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, trust_remote_code=trust)
|
| 28 |
+
imgproc = AutoImageProcessor.from_pretrained(pretrained_model_name_or_path, trust_remote_code=trust)
|
| 29 |
+
return cls(imgproc, tok, **kwargs)
|
| 30 |
+
|
| 31 |
+
def apply_chat_template(self, messages: List[Dict[str, Any]], **kwargs) -> Union[str, List[int]]:
|
| 32 |
+
return self.tokenizer.apply_chat_template(messages, **kwargs)
|
| 33 |
+
|
| 34 |
+
# 下面这些方法给 HF 路径用;vLLM 初始化只需要能成功 new 出来即可
|
| 35 |
+
def __call__(self, *args, **kwargs) -> BatchFeature:
|
| 36 |
+
# 返回一个最小结构,避免被实际调用时崩溃
|
| 37 |
+
data = {"input_ids": torch.zeros(1, 1, dtype=torch.long)}
|
| 38 |
+
return BatchFeature(data=data)
|
| 39 |
+
|
| 40 |
+
# 提供给你自己脚本用的辅助(可选)
|
| 41 |
+
def prepare_vllm_inputs(self, messages, images, add_generation_prompt=True):
|
| 42 |
+
text = self.apply_chat_template(messages, tokenize=False, add_generation_prompt=add_generation_prompt)
|
| 43 |
+
proc = self.image_processor(images=images, return_tensors="pt")
|
| 44 |
+
grid = torch.as_tensor(proc["image_grid_thw"])
|
| 45 |
+
merge = getattr(self, "merge_size", 2)
|
| 46 |
+
for thw in grid:
|
| 47 |
+
num = int((thw[0] * thw[1] * thw[2]) // (merge ** 2))
|
| 48 |
+
text = text.replace(PLACEHOLDER, PLACEHOLDER * num, 1)
|
| 49 |
+
return text, images
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# # processing_opencua.py
|
| 54 |
+
# from transformers import Qwen2_5_VLProcessor, AutoTokenizer, AutoImageProcessor
|
| 55 |
+
|
| 56 |
+
# class OpenCUAProcessor(Qwen2_5_VLProcessor):
|
| 57 |
+
# # 用字符串就行,但我们会在 from_pretrained 里手动加载,避免字符串反射
|
| 58 |
+
# tokenizer_class = "TikTokenV3"
|
| 59 |
+
|
| 60 |
+
# @classmethod
|
| 61 |
+
# def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
| 62 |
+
# # 确保 remote code 可用
|
| 63 |
+
# trust_remote_code = kwargs.get("trust_remote_code", False)
|
| 64 |
+
|
| 65 |
+
# # 1) 手动加载 tokenizer(会按模型目录里的 tokenizer_config.json -> TikTokenV3 + tokenization_opencua.py)
|
| 66 |
+
# tokenizer = AutoTokenizer.from_pretrained(
|
| 67 |
+
# pretrained_model_name_or_path,
|
| 68 |
+
# trust_remote_code=trust_remote_code,
|
| 69 |
+
# )
|
| 70 |
+
|
| 71 |
+
# # 2) 手动加载图像处理器(保持 Qwen2VLImageProcessor)
|
| 72 |
+
# image_processor = AutoImageProcessor.from_pretrained(
|
| 73 |
+
# pretrained_model_name_or_path,
|
| 74 |
+
# trust_remote_code=trust_remote_code,
|
| 75 |
+
# )
|
| 76 |
+
|
| 77 |
+
# # 3) 获取chat_template,如果tokenizer有的话
|
| 78 |
+
# chat_template = getattr(tokenizer, 'chat_template', None)
|
| 79 |
+
|
| 80 |
+
# # 4) 构造并返回 Qwen2.5-VL 的 Processor 实例,传递chat_template
|
| 81 |
+
# processor = cls(image_processor=image_processor, tokenizer=tokenizer, chat_template=chat_template)
|
| 82 |
+
|
| 83 |
+
# # 5) 添加vLLM需要的属性
|
| 84 |
+
# # 这些token ID需要与tokenizer_config.json中的定义一致
|
| 85 |
+
# processor.image_token = "<|media_placeholder|>" # 使用OpenCUA的媒体占位符
|
| 86 |
+
# processor.video_token = "<|media_placeholder|>" # 视频也使用相同的占位符
|
| 87 |
+
|
| 88 |
+
# # 添加token ID(从tokenizer_config.json中获取)
|
| 89 |
+
# vocab = tokenizer.get_vocab()
|
| 90 |
+
# processor.image_token_id = vocab.get("<|media_placeholder|>", 151664) # 默认151664
|
| 91 |
+
# processor.video_token_id = vocab.get("<|media_placeholder|>", 151664) # 视频使用相同ID
|
| 92 |
+
|
| 93 |
+
# return processor
|
processor_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"processor_class": "Qwen2VLProcessor"
|
| 3 |
+
}
|
| 4 |
+
|
qwen.tiktoken
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tiktoken.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b2b1b8dfb5cc5f024bafc373121c6aba3f66f9a5a0269e243470a1de16a33186
|
| 3 |
+
size 2561218
|
tokenization_opencua.py
ADDED
|
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import tiktoken
|
| 3 |
+
|
| 4 |
+
from logging import getLogger
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from typing import (
|
| 7 |
+
cast,
|
| 8 |
+
Tuple,
|
| 9 |
+
Dict,
|
| 10 |
+
Iterator,
|
| 11 |
+
List,
|
| 12 |
+
Union,
|
| 13 |
+
Optional,
|
| 14 |
+
)
|
| 15 |
+
from shutil import copyfile
|
| 16 |
+
from tiktoken.load import load_tiktoken_bpe
|
| 17 |
+
from tokenizers import AddedToken
|
| 18 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
| 19 |
+
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
|
| 20 |
+
|
| 21 |
+
# 导入Qwen2Tokenizer用于继承
|
| 22 |
+
try:
|
| 23 |
+
from transformers.models.qwen2.tokenization_qwen2 import Qwen2Tokenizer
|
| 24 |
+
QWEN2_AVAILABLE = True
|
| 25 |
+
except ImportError:
|
| 26 |
+
QWEN2_AVAILABLE = False
|
| 27 |
+
Qwen2Tokenizer = PreTrainedTokenizer
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
logger = getLogger(__name__)
|
| 31 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tiktoken.model"}
|
| 32 |
+
|
| 33 |
+
class TikTokenTokenizer(PreTrainedTokenizer):
|
| 34 |
+
"""
|
| 35 |
+
Tokenizing and encoding/decoding text using the Tiktoken tokenizer. See megatron/tokenizer/tiktoken_tokenizer.py.
|
| 36 |
+
|
| 37 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
| 38 |
+
this superclass for more information regarding those methods.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
vocab_file (`str`):
|
| 42 |
+
The path to the Tiktoken model file.
|
| 43 |
+
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|begin_of_text|>",`):
|
| 44 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
| 45 |
+
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|end_of_text|>"`):
|
| 46 |
+
The end of sequence token.
|
| 47 |
+
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|reserved_special_token_249|>"`):
|
| 48 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
| 49 |
+
token instead. The second to last item in special_tokens.
|
| 50 |
+
pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|reserved_special_token_250|>"`):
|
| 51 |
+
The token used for padding, for example when batching sequences of different lengths.
|
| 52 |
+
additional_special_tokens (list of `str`, *optional*):
|
| 53 |
+
A tuple or a list of additional tokens, which will be marked as `special`, meaning that they will be
|
| 54 |
+
skipped when decoding if `skip_special_tokens` is set to `True`.
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 58 |
+
|
| 59 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 60 |
+
|
| 61 |
+
special_tokens: Dict[str, int]
|
| 62 |
+
|
| 63 |
+
num_reserved_special_tokens = 256
|
| 64 |
+
|
| 65 |
+
pat_str = "|".join(
|
| 66 |
+
[
|
| 67 |
+
r"""[\p{Han}]+""",
|
| 68 |
+
r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?""",
|
| 69 |
+
r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?""",
|
| 70 |
+
r"""\p{N}{1,3}""",
|
| 71 |
+
r""" ?[^\s\p{L}\p{N}]+[\r\n]*""",
|
| 72 |
+
r"""\s*[\r\n]+""",
|
| 73 |
+
r"""\s+(?!\S)""",
|
| 74 |
+
r"""\s+""",
|
| 75 |
+
]
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
def __init__(
|
| 79 |
+
self,
|
| 80 |
+
vocab_file,
|
| 81 |
+
bos_token: Union[str, AddedToken]="[BOS]",
|
| 82 |
+
eos_token: Union[str, AddedToken]="[EOS]",
|
| 83 |
+
unk_token: Union[str, AddedToken, None]=None,
|
| 84 |
+
pad_token: Union[str, AddedToken, None]=None,
|
| 85 |
+
additional_special_tokens: List[str]=None,
|
| 86 |
+
added_tokens_decoder: Optional[dict] = None,
|
| 87 |
+
**kwargs,
|
| 88 |
+
):
|
| 89 |
+
assert os.path.isfile(vocab_file), vocab_file
|
| 90 |
+
|
| 91 |
+
if additional_special_tokens is None:
|
| 92 |
+
# dumping mode
|
| 93 |
+
used_special_tokens = [
|
| 94 |
+
"<|im_end|>",
|
| 95 |
+
"<|im_user|>",
|
| 96 |
+
"<|im_assistant|>",
|
| 97 |
+
"<|reserved_token_0|>",
|
| 98 |
+
"<|start_header_id|>",
|
| 99 |
+
"<|end_header_id|>",
|
| 100 |
+
"<|reserved_token_1|>",
|
| 101 |
+
"[EOT]",
|
| 102 |
+
"<|im_system|>",
|
| 103 |
+
"<|reserved_token_2|>",
|
| 104 |
+
"<|reserved_token_3|>",
|
| 105 |
+
"<|reserved_token_4|>",
|
| 106 |
+
"<|reserved_token_5|>",
|
| 107 |
+
"<|reserved_token_6|>",
|
| 108 |
+
"<|reserved_token_7|>",
|
| 109 |
+
"<|im_middle|>",
|
| 110 |
+
"<|media_begin|>",
|
| 111 |
+
"<|media_content|>",
|
| 112 |
+
"<|media_end|>",
|
| 113 |
+
"<|media_placeholder|>",
|
| 114 |
+
# 添加标准Qwen2.5-VL需要的token
|
| 115 |
+
"<|vision_start|>",
|
| 116 |
+
"<|vision_end|>",
|
| 117 |
+
"<|image_pad|>",
|
| 118 |
+
"<|video_pad|>",
|
| 119 |
+
]
|
| 120 |
+
used_reserved_tokens = 12 # 原来8个 + 新增4个vision相关token
|
| 121 |
+
last_reserved_token_id = self.num_reserved_special_tokens - 4 - len(used_special_tokens) + used_reserved_tokens - 1
|
| 122 |
+
additional_special_tokens = used_special_tokens + [
|
| 123 |
+
f"<|reserved_token_{i}|>"
|
| 124 |
+
for i in range(used_reserved_tokens, last_reserved_token_id + 1)
|
| 125 |
+
]
|
| 126 |
+
# num_reserved_special_tokens = additional_special_tokens + BOS + EOS + unk_token + pad_token
|
| 127 |
+
assert len(additional_special_tokens) + 4 == self.num_reserved_special_tokens, f"additional_special_tokens num: {len(additional_special_tokens)} is not correct"
|
| 128 |
+
# we assume that the instance is under initialization and unk_token and pad_token should be automatically inferred
|
| 129 |
+
if unk_token is not None:
|
| 130 |
+
raise ValueError("unk_token should not be set in dumping mode when additional_special_tokens is None")
|
| 131 |
+
if pad_token is not None:
|
| 132 |
+
raise ValueError("pad_token should not be set in dumping mode when additional_special_tokens is None")
|
| 133 |
+
# last two reserved tokens
|
| 134 |
+
unk_token = f"[UNK]"
|
| 135 |
+
pad_token = f"[PAD]"
|
| 136 |
+
|
| 137 |
+
logger.info(f"adding unk_token: {unk_token} and pad_token: {pad_token}")
|
| 138 |
+
self.additional_special_tokens = additional_special_tokens
|
| 139 |
+
special_tokens = [str(bos_token), str(eos_token)] + additional_special_tokens + [str(unk_token), str(pad_token)]
|
| 140 |
+
|
| 141 |
+
self.vocab_file = vocab_file
|
| 142 |
+
mergeable_ranks = load_tiktoken_bpe(vocab_file)
|
| 143 |
+
num_base_tokens = len(mergeable_ranks)
|
| 144 |
+
self.special_tokens = {
|
| 145 |
+
token: num_base_tokens + i for i, token in enumerate(special_tokens)
|
| 146 |
+
}
|
| 147 |
+
else:
|
| 148 |
+
self.additional_special_tokens = additional_special_tokens
|
| 149 |
+
special_tokens_mapping = {
|
| 150 |
+
i: added_tokens_decoder[i].content for i in added_tokens_decoder
|
| 151 |
+
}
|
| 152 |
+
|
| 153 |
+
self.vocab_file = vocab_file
|
| 154 |
+
mergeable_ranks = load_tiktoken_bpe(vocab_file)
|
| 155 |
+
num_base_tokens = len(mergeable_ranks)
|
| 156 |
+
self.special_tokens = {
|
| 157 |
+
special_tokens_mapping.get(i, f"<|reserved_token_{i}|>"): i
|
| 158 |
+
for i in range(
|
| 159 |
+
num_base_tokens, num_base_tokens + self.num_reserved_special_tokens + 2
|
| 160 |
+
)
|
| 161 |
+
}
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
self.model = tiktoken.Encoding(
|
| 166 |
+
name=Path(vocab_file).name,
|
| 167 |
+
pat_str=self.pat_str,
|
| 168 |
+
mergeable_ranks=mergeable_ranks,
|
| 169 |
+
special_tokens=self.special_tokens,
|
| 170 |
+
)
|
| 171 |
+
logger.info(f"Reloaded tiktoken model from {vocab_file}")
|
| 172 |
+
|
| 173 |
+
self.n_words: int = self.model.n_vocab
|
| 174 |
+
# BOS / EOS token IDs
|
| 175 |
+
self.bos_id: int = self.special_tokens[str(bos_token)]
|
| 176 |
+
self.eos_id: int = self.special_tokens[str(eos_token)]
|
| 177 |
+
|
| 178 |
+
logger.info(
|
| 179 |
+
f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}"
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
self.pad_id: int = self.special_tokens[str(pad_token)]
|
| 183 |
+
self.unk_id: int = self.special_tokens[str(unk_token)]
|
| 184 |
+
self.byte_encoder = bytes_to_unicode()
|
| 185 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
| 186 |
+
|
| 187 |
+
self.decoder = {}
|
| 188 |
+
for i in range(self.n_words):
|
| 189 |
+
# Taken from https://gist.github.com/xenova/a452a6474428de0182b17605a98631ee
|
| 190 |
+
decoding = ''.join([
|
| 191 |
+
self.byte_encoder[ord(char)] for char in
|
| 192 |
+
self.model.decode_single_token_bytes(i).decode('latin-1')
|
| 193 |
+
])
|
| 194 |
+
self.decoder[i] = decoding
|
| 195 |
+
|
| 196 |
+
self.encoder = {}
|
| 197 |
+
for i in range(self.n_words):
|
| 198 |
+
if i in self.decoder:
|
| 199 |
+
self.encoder[self.decoder[i]] = i
|
| 200 |
+
|
| 201 |
+
super().__init__(
|
| 202 |
+
bos_token=bos_token,
|
| 203 |
+
eos_token=eos_token,
|
| 204 |
+
unk_token=unk_token,
|
| 205 |
+
pad_token=pad_token,
|
| 206 |
+
additional_special_tokens=self.additional_special_tokens,
|
| 207 |
+
**kwargs,
|
| 208 |
+
)
|
| 209 |
+
self.all_special_ids_set = set(self.all_special_ids)
|
| 210 |
+
|
| 211 |
+
def encode(
|
| 212 |
+
self,
|
| 213 |
+
text: str,
|
| 214 |
+
allow_special_tokens = True,
|
| 215 |
+
**kwargs
|
| 216 |
+
) -> List[int]:
|
| 217 |
+
"""
|
| 218 |
+
Encodes a string into a list of token IDs.
|
| 219 |
+
|
| 220 |
+
Args:
|
| 221 |
+
text (str): The input string to be encoded.
|
| 222 |
+
|
| 223 |
+
Returns:
|
| 224 |
+
list[int]: A list of token IDs.
|
| 225 |
+
"""
|
| 226 |
+
# If there are other args, we should call super().encode because there are a lot of code
|
| 227 |
+
# to handle those args. supper().encode finally will call _tokenize and _convert_token_to_id.
|
| 228 |
+
# NOTE: our encode method is not compatible with the super().encode method,
|
| 229 |
+
# e.g. split_special_tokens' default is True in our encode method.
|
| 230 |
+
if len(kwargs) > 0:
|
| 231 |
+
logger.warning( f"Calling super().encode with {kwargs}" )
|
| 232 |
+
return super().encode(text, **kwargs)
|
| 233 |
+
|
| 234 |
+
assert type(text) is str
|
| 235 |
+
|
| 236 |
+
# The tiktoken tokenizer can handle <=400k chars without
|
| 237 |
+
# pyo3_runtime.PanicException.
|
| 238 |
+
TIKTOKEN_MAX_ENCODE_CHARS = 400_000
|
| 239 |
+
|
| 240 |
+
# https://github.com/openai/tiktoken/issues/195
|
| 241 |
+
# Here we iterate over subsequences and split if we exceed the limit
|
| 242 |
+
# of max consecutive non-whitespace or whitespace characters.
|
| 243 |
+
MAX_NO_WHITESPACES_CHARS = 25_000
|
| 244 |
+
|
| 245 |
+
texts = self.pre_tokenizer_process(text)
|
| 246 |
+
|
| 247 |
+
all_substrs = []
|
| 248 |
+
for text in texts:
|
| 249 |
+
substrs = (
|
| 250 |
+
substr
|
| 251 |
+
for i in range(0, len(text), TIKTOKEN_MAX_ENCODE_CHARS)
|
| 252 |
+
for substr in self._split_whitespaces_or_nonwhitespaces(
|
| 253 |
+
text[i: i + TIKTOKEN_MAX_ENCODE_CHARS], MAX_NO_WHITESPACES_CHARS
|
| 254 |
+
)
|
| 255 |
+
)
|
| 256 |
+
all_substrs.extend(substrs)
|
| 257 |
+
|
| 258 |
+
t: List[int] = []
|
| 259 |
+
for substr in all_substrs:
|
| 260 |
+
if allow_special_tokens:
|
| 261 |
+
t.extend(
|
| 262 |
+
self.model.encode(
|
| 263 |
+
substr,
|
| 264 |
+
allowed_special="all",
|
| 265 |
+
)
|
| 266 |
+
)
|
| 267 |
+
else:
|
| 268 |
+
t.extend(
|
| 269 |
+
self.model.encode(
|
| 270 |
+
substr,
|
| 271 |
+
disallowed_special=(),
|
| 272 |
+
)
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
return t
|
| 276 |
+
|
| 277 |
+
def decode(
|
| 278 |
+
self,
|
| 279 |
+
token_ids: Union[int, List[int]],
|
| 280 |
+
**kwargs
|
| 281 |
+
) -> str:
|
| 282 |
+
"""
|
| 283 |
+
Decodes a list of token IDs into a string.
|
| 284 |
+
|
| 285 |
+
Args:
|
| 286 |
+
token_ids (List[int]): The list of token IDs to be decoded.
|
| 287 |
+
|
| 288 |
+
Returns:
|
| 289 |
+
str: The decoded string.
|
| 290 |
+
"""
|
| 291 |
+
# If there are other args, we should call super().decode because there are a lot of code
|
| 292 |
+
# to handle those args. supper().encode finally will call convert_tokens_to_string and _convert_id_to_token.
|
| 293 |
+
if len(kwargs) > 0:
|
| 294 |
+
return super().decode(token_ids, **kwargs)
|
| 295 |
+
|
| 296 |
+
if type(token_ids) is int:
|
| 297 |
+
token_ids = [token_ids]
|
| 298 |
+
|
| 299 |
+
return self.model.decode(cast(List[int], token_ids))
|
| 300 |
+
|
| 301 |
+
@staticmethod
|
| 302 |
+
def _split_whitespaces_or_nonwhitespaces(
|
| 303 |
+
s: str, max_consecutive_slice_len: int
|
| 304 |
+
) -> Iterator[str]:
|
| 305 |
+
"""
|
| 306 |
+
Splits the string `s` so that each substring contains no more than `max_consecutive_slice_len`
|
| 307 |
+
consecutive whitespaces or consecutive non-whitespaces.
|
| 308 |
+
"""
|
| 309 |
+
current_slice_len = 0
|
| 310 |
+
current_slice_is_space = s[0].isspace() if len(s) > 0 else False
|
| 311 |
+
slice_start = 0
|
| 312 |
+
|
| 313 |
+
for i in range(len(s)):
|
| 314 |
+
is_now_space = s[i].isspace()
|
| 315 |
+
|
| 316 |
+
if current_slice_is_space ^ is_now_space:
|
| 317 |
+
current_slice_len = 1
|
| 318 |
+
current_slice_is_space = is_now_space
|
| 319 |
+
else:
|
| 320 |
+
current_slice_len += 1
|
| 321 |
+
if current_slice_len > max_consecutive_slice_len:
|
| 322 |
+
yield s[slice_start:i]
|
| 323 |
+
slice_start = i
|
| 324 |
+
current_slice_len = 1
|
| 325 |
+
yield s[slice_start:]
|
| 326 |
+
|
| 327 |
+
def pre_tokenizer_process(self, text: str) -> List[str]:
|
| 328 |
+
"""
|
| 329 |
+
pre-tokenizes the input text into a list of tokens.
|
| 330 |
+
This method is used to split the input text into smaller chunks for internal processing.
|
| 331 |
+
"""
|
| 332 |
+
return [text]
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
""" ----- Below are the abstract methods required by PreTrainedTokenizer ----- """
|
| 336 |
+
@property
|
| 337 |
+
def vocab_size(self) -> int:
|
| 338 |
+
return self.n_words
|
| 339 |
+
|
| 340 |
+
def get_vocab(self) -> Dict[str, int]:
|
| 341 |
+
return self.encoder
|
| 342 |
+
|
| 343 |
+
def _tokenize(self, text: str, **kwargs) -> List[str]:
|
| 344 |
+
return [
|
| 345 |
+
self.decoder[t]
|
| 346 |
+
for t in self.encode(text)
|
| 347 |
+
]
|
| 348 |
+
|
| 349 |
+
def _convert_token_to_id(self, token: str) -> int:
|
| 350 |
+
return self.encoder.get(token, self.unk_id)
|
| 351 |
+
|
| 352 |
+
def _convert_id_to_token(self, index: int) -> str:
|
| 353 |
+
return self.decoder.get(index)
|
| 354 |
+
|
| 355 |
+
@staticmethod
|
| 356 |
+
def clean_up_tokenization(out_string: str) -> str:
|
| 357 |
+
return out_string
|
| 358 |
+
|
| 359 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
| 360 |
+
text = ''.join(tokens)
|
| 361 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', 'replace')
|
| 362 |
+
return text
|
| 363 |
+
|
| 364 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 365 |
+
if not os.path.isdir(save_directory):
|
| 366 |
+
raise ValueError(f"vocabulary path ({save_directory}) should be a directory")
|
| 367 |
+
out_vocab_file = os.path.join(
|
| 368 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
| 372 |
+
copyfile(self.vocab_file, out_vocab_file)
|
| 373 |
+
|
| 374 |
+
return (out_vocab_file,)
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
class TikTokenV3(TikTokenTokenizer):
|
| 378 |
+
num_reserved_special_tokens = 293 + 128
|
| 379 |
+
pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"151643": {"content": "[BOS]", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 4 |
+
"151644": {"content": "[EOS]", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 5 |
+
"151645": {"content": "<|im_end|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 6 |
+
"151646": {"content": "<|im_user|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 7 |
+
"151647": {"content": "<|im_assistant|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 8 |
+
"151648": {"content": "<|reserved_token_0|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 9 |
+
"151649": {"content": "<|start_header_id|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 10 |
+
"151650": {"content": "<|end_header_id|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 11 |
+
"151651": {"content": "<|reserved_token_1|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 12 |
+
"151652": {"content": "[EOT]", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 13 |
+
"151653": {"content": "<|im_system|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 14 |
+
"151654": {"content": "<|reserved_token_2|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 15 |
+
"151655": {"content": "<|reserved_token_3|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 16 |
+
"151656": {"content": "<|reserved_token_4|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 17 |
+
"151657": {"content": "<|reserved_token_5|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 18 |
+
"151658": {"content": "<|reserved_token_6|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 19 |
+
"151659": {"content": "<|reserved_token_7|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 20 |
+
"151660": {"content": "<|im_middle|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 21 |
+
"151661": {"content": "<|media_begin|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 22 |
+
"151662": {"content": "<|media_content|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 23 |
+
"151663": {"content": "<|media_end|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 24 |
+
"151664": {"content": "<|media_placeholder|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 25 |
+
|
| 26 |
+
"151665": {"content": "<|vision_start|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 27 |
+
"151666": {"content": "<|vision_end|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 28 |
+
"151667": {"content": "<|image_pad|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 29 |
+
"151668": {"content": "<|video_pad|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 30 |
+
|
| 31 |
+
"152062": {"content": "[UNK]", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true},
|
| 32 |
+
"152063": {"content": "[PAD]", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false, "special": true}
|
| 33 |
+
},
|
| 34 |
+
|
| 35 |
+
"additional_special_tokens": [
|
| 36 |
+
"<|im_end|>", "<|im_user|>", "<|im_assistant|>",
|
| 37 |
+
"<|reserved_token_0|>", "<|start_header_id|>", "<|end_header_id|>",
|
| 38 |
+
"<|reserved_token_1|>", "[EOT]", "<|im_system|>",
|
| 39 |
+
"<|reserved_token_2|>", "<|reserved_token_3|>", "<|reserved_token_4|>",
|
| 40 |
+
"<|reserved_token_5|>", "<|reserved_token_6|>", "<|reserved_token_7|>",
|
| 41 |
+
"<|im_middle|>",
|
| 42 |
+
"<|media_begin|>", "<|media_content|>", "<|media_end|>", "<|media_placeholder|>",
|
| 43 |
+
"<|vision_start|>", "<|vision_end|>", "<|image_pad|>", "<|video_pad|>"
|
| 44 |
+
],
|
| 45 |
+
|
| 46 |
+
"bos_token": "[BOS]",
|
| 47 |
+
"clean_up_tokenization_spaces": false,
|
| 48 |
+
"eos_token": "[EOS]",
|
| 49 |
+
"extra_special_tokens": {},
|
| 50 |
+
"chat_template": "{%- for message in messages -%}{%- if loop.first and messages[0]['role'] != 'system' -%}{{'<|im_system|>system<|im_middle|>You are a helpful assistant<|im_end|>'}}{%- endif -%}{%- if message['role'] == 'system' -%}{{'<|im_system|>'}}{%- endif -%}{%- if message['role'] == 'user' -%}{{'<|im_user|>'}}{%- endif -%}{%- if message['role'] == 'assistant' -%}{{'<|im_assistant|>'}}{%- endif -%}{{- message['role'] -}}{{'<|im_middle|>'}}{%- if message['content'] is string -%}{{- message['content'] + '<|im_end|>' -}}{%- else -%}{%- for content in message['content'] -%}{%- if content['type'] == 'image' or 'image' in content or 'image_url' in content -%}{{'<|media_begin|>image<|media_content|><|media_placeholder|><|media_end|>'}}{%- else -%}{{content['text']}}{%- endif -%}{%- endfor -%}{{'<|im_end|>'}}{%- endif -%}{%- endfor -%}{%- if add_generation_prompt -%}{{'<|im_assistant|>assistant<|im_middle|>'}}{%- endif -%}",
|
| 51 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"tokenizer_class": "TikTokenV3",
|
| 54 |
+
"unk_token": "[UNK]",
|
| 55 |
+
"auto_map": {
|
| 56 |
+
"AutoTokenizer": ["tokenization_opencua.TikTokenV3", null]
|
| 57 |
+
}
|
| 58 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|