--- language: ga datasets: - common_voice - living-audio-Irish metrics: - wer tags: - audio - automatic-speech-recognition - ga-IE - speech - Irish - Gaelic model-index: - name: Wav2vec 2.0 large 300m XLS-R results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 10.0 type: common_voice args: ga-IE metrics: - name: Test WER type: wer value: 25.94 --- # Irish-Gaelic Automatic Speech Recognition This is the model for Irish ASR. It has been trained on the Common-voice dataset and living Irish audio dataset. The Common-voice code for the Irish language is ga-IE. From the Common voice dataset, all the Validated audio clips and all the living audio clips were taken into account and after a random train-test split, 90% percent of the total dataset (5156 utterances) were taken for training, and the rest of the 10% of real data (579 utterances) were taken for testing. This dataset was finetuned on wav2vec2-large-xls-r-300m. On the testing dataset, 25.94% of WER could be achieved. ### How to use Example of transcribing the Common Voice audio clip from the invalidated dataset, using GPU if available. The model expects 16kHz audio. ```python from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor model = Wav2Vec2ForCTC.from_pretrained("Aditya3107/wav2vec2-large-xls-r-1b-ga-ie") processor = Wav2Vec2Processor.from_pretrained("Aditya3107/wav2vec2-large-xls-r-1b-ga-ie") # Reading taken audio clip import librosa, torch audio, rate = librosa.load("common-voice-irish/common_voice/cv-corpus-10.0-2022-07-04/ga-IE/clips/common_voice_ga-IE_1818627.mp3", sr = 16000) # Taking an input value input_values = processor(audio, sampling_rate=16_000, return_tensors = "pt", padding="longest").input_values # Storing logits (non-normalized prediction values) logits = model(input_values).logits # Storing predicted ids prediction = torch.argmax(logits, dim = -1) # Passing the prediction to the tokenizer decode to get the transcription transcription = processor.batch_decode(prediction)[0] print(transcription) ``` ### Results Example of the transcribed audio clips and testing on SCLITE. ] ``` Speaker sentences 0: #utts: 1 id: (common_voice_ga-IE_17401296.mp3) Scores: (#C #S #D #I) 4 1 0 0 Attributes: Case_sensitve REF: an bhfuil cóta bán óir HYP: an bhfuil cóta bán air Eval: S id: (common_voice_ga-IE_17410244.mp3) Scores: (#C #S #D #I) 3 1 0 2 Attributes: Case_sensitve REF: *** ** an bud é sin HYP: cad é an rud é sin Eval: I I S id: (common_voice_ga-IE_17410257.mp3) Scores: (#C #S #D #I) 9 2 1 2 Attributes: Case_sensitve REF: i gabhaim buíochas libh a chairde ******* ** támindéagtstruth le tuilleadh uaibh ar baá HYP: * gabhaim buíochas libh a chairde táimid ag tsnúth le tuilleadh uaibh ar ball Eval: D I I S S id: (common_voice_ga-IE_17410401.mp3) Scores: (#C #S #D #I) 6 1 0 0 Attributes: Case_sensitve REF: níl ach tá peann ina phóca uige HYP: níl ach tá peann ina phóca aige Eval: S id: (common_voice_ga-IE_17410403.mp3) Scores: (#C #S #D #I) 5 1 0 1 Attributes: Case_sensitve REF: agus *** cadé an dath atá air HYP: agus cad é an dath atá air Eval: I S id: (common_voice_ga-IE_17410412.mp3) Scores: (#C #S #D #I) 6 2 0 0 Attributes: Case_sensitve REF: is lá é seo chun ceiliúradh a dhéan HYP: is lá é seo chun céiliúradh a dhéanamh Eval: S S id: (common_voice_ga-IE_17444712.mp3) Scores: (#C #S #D #I) 4 6 0 0 Attributes: Case_sensitve REF: don chathaoileach mirín de brom don stiúrdhóirat liam ón maoladha HYP: don chathaoirleach máirín de brún don stiúrthóir liam ó maolaodha Eval: S S S S S S id: (common_voice_ga-IE_17449454.mp3) Scores: (#C #S #D #I) 4 0 0 0 Attributes: Case_sensitve REF: ceacht a trí déag HYP: ceacht a trí déag Eval: ``` ### Future Tasks The language model with KenLM will be added if any good resource of Irish text is found. ### Citation If you want to cite this model you can use this: ``` @MISC {, author = "Aditya Parikh", title = "Finetuned XLS-R model for Irish (Ga-IE) language for Automatic Speech Recognition", howpublished = "{\url{https://huggingface.co/Aditya3107/wav2vec2-large-xls-r-1b-ga-ie}}", month = "aug", year = "2022" } ```