--- library_name: transformers license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: resnet-50-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.5625 --- # resnet-50-finetuned-eurosat This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6309 - Accuracy: 0.5625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 3 | 0.6749 | 0.5625 | | No log | 2.0 | 6 | 0.6746 | 0.5625 | | No log | 3.0 | 9 | 0.6696 | 0.5625 | | 2.1049 | 4.0 | 12 | 0.6614 | 0.5312 | | 2.1049 | 5.0 | 15 | 0.6552 | 0.5625 | | 2.1049 | 6.0 | 18 | 0.6494 | 0.5625 | | 2.0436 | 7.0 | 21 | 0.6427 | 0.5625 | | 2.0436 | 8.0 | 24 | 0.6399 | 0.5625 | | 2.0436 | 9.0 | 27 | 0.6325 | 0.5625 | | 1.7828 | 10.0 | 30 | 0.6314 | 0.5625 | | 1.7828 | 11.0 | 33 | 0.6309 | 0.5625 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0