---
base_model: BAAI/bge-small-en-v1.5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:60323
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: No recipes found with these beef stock powder and orange juice!
sentences:
- Can you provide recipe ideas with beef stock powder and orange juice?
- What are some recipes that utilize jasmine rice and thai red curry paste effectively?
- What recipes incorporate broccoli and bacon into meals?
- source_sentence: No recipes found with these nutmeg flower and angel hair rice noodles!
sentences:
- What dishes can be created with kale and bok choy?
- What recipes incorporate green zucchini and vegan ground beef into meals?
- Can you provide me with meal ideas using nutmeg flower and angel hair rice noodles?
- source_sentence: No recipes found with these cinnamon and ground lamb!
sentences:
- Can you suggest dishes where cinnamon and ground lamb is key?
- What diet tags are relevant to Sneha's Aloo Baingan ?
- What recipes are there with toasted sesame oil and red lentils/masoor?
- source_sentence: No recipes found with these red lentils/masoor and bok choy!
sentences:
- What are the culinary uses of chili sauce and sriracha?
- What are some ways to use canned tomato puree and frozen ube in recipes?
- What are some ideas for dishes with red lentils/masoor and bok choy?
- source_sentence: No recipes found with these red onion and cubed stuffing!
sentences:
- Can you provide meal suggestions involving vanilla extract and brown lentil/black
masoor dal?
- What recipes incorporate methi (fenugreek) and honey in their ingredients?
- What culinary preparations can be made with red onion and cubed stuffing?
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 384
type: dim_384
metrics:
- type: cosine_accuracy@1
value: 0.9819483813217962
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9976130091004028
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9995524392063255
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9819483813217962
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.33253766970013426
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1999104878412651
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9819483813217962
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9976130091004028
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9995524392063255
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9923670621371893
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9897597379993318
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9897597379993323
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.9812024466656721
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.997463822169178
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9998508130687752
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9812024466656721
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3324879407230593
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19997016261375503
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9812024466656721
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.997463822169178
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9998508130687752
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9921395779775503
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9894450246158434
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9894450246158436
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.979561390422199
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9970162613755035
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9998508130687752
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.979561390422199
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3323387537918345
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19997016261375505
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.979561390422199
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9970162613755035
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9998508130687752
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9913010184783637
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9883310955293644
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9883310955293649
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.9816500074593466
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9968670744442787
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9997016261375503
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9816500074593466
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3322890248147595
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19994032522751004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9816500074593466
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9968670744442787
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9997016261375503
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9920343842432707
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9893333120209138
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9893333120209146
name: Cosine Map@100
---
# SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Adi-0-0-Gupta/Embedding")
# Run inference
sentences = [
'No recipes found with these red onion and cubed stuffing!',
'What culinary preparations can be made with red onion and cubed stuffing?',
'Can you provide meal suggestions involving vanilla extract and brown lentil/black masoor dal?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_384`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.9819 |
| cosine_accuracy@3 | 0.9976 |
| cosine_accuracy@5 | 0.9996 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.9819 |
| cosine_precision@3 | 0.3325 |
| cosine_precision@5 | 0.1999 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.9819 |
| cosine_recall@3 | 0.9976 |
| cosine_recall@5 | 0.9996 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9924 |
| cosine_mrr@10 | 0.9898 |
| **cosine_map@100** | **0.9898** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.9812 |
| cosine_accuracy@3 | 0.9975 |
| cosine_accuracy@5 | 0.9999 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.9812 |
| cosine_precision@3 | 0.3325 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.9812 |
| cosine_recall@3 | 0.9975 |
| cosine_recall@5 | 0.9999 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9921 |
| cosine_mrr@10 | 0.9894 |
| **cosine_map@100** | **0.9894** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.9796 |
| cosine_accuracy@3 | 0.997 |
| cosine_accuracy@5 | 0.9999 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.9796 |
| cosine_precision@3 | 0.3323 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.9796 |
| cosine_recall@3 | 0.997 |
| cosine_recall@5 | 0.9999 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9913 |
| cosine_mrr@10 | 0.9883 |
| **cosine_map@100** | **0.9883** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.9817 |
| cosine_accuracy@3 | 0.9969 |
| cosine_accuracy@5 | 0.9997 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.9817 |
| cosine_precision@3 | 0.3323 |
| cosine_precision@5 | 0.1999 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.9817 |
| cosine_recall@3 | 0.9969 |
| cosine_recall@5 | 0.9997 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.992 |
| cosine_mrr@10 | 0.9893 |
| **cosine_map@100** | **0.9893** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 60,323 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
No recipes found with these indian cottage cheese (paneer) and bitter melon!
| What are some culinary options with indian cottage cheese (paneer) and bitter melon?
|
| No recipes found with these curry leaf and rice cakes!
| What recipes can be made using curry leaf and rice cakes?
|
| No recipes found with these bacon and rosemary!
| What are the different culinary recipes that use bacon and rosemary?
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `gradient_accumulation_steps`: 8
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters