--- license: cc-by-nc-4.0 datasets: - AdamCodd/Civitai-8m-prompts metrics: - rouge base_model: t5-small model-index: - name: t5-small-negative-prompt-generator results: - task: type: text-generation name: Text Generation metrics: - type: loss value: 0.173 - type: rouge-1 value: 63.86 name: Validation ROUGE-1 - type: rouge-2 value: 47.5195 name: Validation ROUGE-2 - type: rouge-l value: 62.0977 name: Validation ROUGE-L widget: - text: masterpiece, 1girl, looking at viewer, sitting, tea, table, garden example_title: Prompt pipeline_tag: text2text-generation inference: false tags: - art --- ## t5-small-negative-prompt-generator This model [t5-small](https://huggingface.co/google-t5/t5-small) has been finetuned on a subset of the [AdamCodd/Civitai-8m-prompts](https://huggingface.co/datasets/AdamCodd/Civitai-8m-prompts) dataset (~800K prompts) focused on the top 10% prompts according to Civitai's positive engagement ("stats" field in the dataset). It achieves the following results on the evaluation set: * Loss: 0.1730 * Rouge1: 63.8600 * Rouge2: 47.5195 * Rougel: 62.0977 * Rougelsum: 62.1006 The idea behind this is to automatically generate negative prompts that improve the end result according to the positive prompt input. I believe it could be useful to display suggestions for new users who use stable-diffusion or similar. The license is **cc-by-nc-4.0**. For commercial use rights, please [contact me](https://discord.com/users/859202914400075798). ## Usage The length of the negative prompt is adjustable with the `max_new_tokens` parameter. Keep in mind that you'll need to adjust the samplers slightly to avoid repetition and improve the quality of the output. The dataset includes negative embeddings, so you'll find them in the output. ```python from transformers import pipeline text2text_generator = pipeline("text2text-generation", model="AdamCodd/t5-small-negative-prompt-generator") generated_text = text2text_generator( "masterpiece, 1girl, looking at viewer, sitting, tea, table, garden", do_sample=True, max_new_tokens=50, repetition_penalty=1.2, no_repeat_ngram_size=2, temperature=0.9, top_p=0.92 ) print(generated_text) # [{'generated_text': 'easynegative, badhandv4, (worst quality:2), (low quality lowres:1), blurry, text'}] ``` This model has been trained exclusively on stable-diffusion prompts (SD1.4, SD1.5, SD2.1, SDXL...) so it might not work as well on non-stable-diffusion models. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08 - Mixed precision - num_epochs: 1 - weight_decay: 0.01 ### Framework versions - Transformers 4.36.2 - Datasets 2.16.1 - Tokenizers 0.15.0 - Evaluate 0.4.1 If you want to support me, you can [here](https://ko-fi.com/adamcodd).