--- tags: - generated_from_trainer datasets: - coco metrics: - rouge - bleu model-index: - name: vit-swin-base-224-gpt2-image-captioning results: [] --- # vit-swin-base-224-gpt2-image-captioning This model is a fine-tuned version of [](https://huggingface.co/) on the coco dataset. It achieves the following results on the evaluation set: - Loss: 0.7923 - Rouge1: 41.8451 - Rouge2: 16.3493 - Rougel: 38.0288 - Rougelsum: 38.049 - Bleu: 10.2776 - Gen Len: 11.2946 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-------:| | 1.0018 | 0.38 | 2000 | 0.8860 | 38.6537 | 13.8145 | 35.3932 | 35.3935 | 8.2448 | 11.2946 | | 0.8827 | 0.75 | 4000 | 0.8395 | 40.0458 | 14.8829 | 36.5321 | 36.5366 | 9.1169 | 11.2946 | | 0.8378 | 1.13 | 6000 | 0.8140 | 41.2736 | 15.9576 | 37.5504 | 37.5512 | 9.871 | 11.2946 | | 0.7913 | 1.51 | 8000 | 0.8012 | 41.6642 | 16.1987 | 37.8786 | 37.8891 | 10.0786 | 11.2946 | | 0.7794 | 1.89 | 10000 | 0.7933 | 41.9119 | 16.3738 | 38.1062 | 38.1292 | 10.288 | 11.2946 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2