Upload folder using huggingface_hub
Browse files
utils/__pycache__/infer_func.cpython-310.pyc
ADDED
|
Binary file (11.1 kB). View file
|
|
|
utils/infer_func.py
ADDED
|
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from typing import List, Tuple, Optional, Dict
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
from axengine import InferenceSession
|
| 7 |
+
from ml_dtypes import bfloat16
|
| 8 |
+
from transformers import AutoTokenizer, AutoConfig
|
| 9 |
+
import json
|
| 10 |
+
from loguru import logger
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class KVCacheTools:
|
| 14 |
+
"""
|
| 15 |
+
k, v cache 的本地保存和加载
|
| 16 |
+
"""
|
| 17 |
+
def __init__(self, axmodel_num: int, dtype=np.float32):
|
| 18 |
+
self.axmodel_num = axmodel_num
|
| 19 |
+
self.dtype = dtype
|
| 20 |
+
|
| 21 |
+
def save_kvcache(
|
| 22 |
+
self,
|
| 23 |
+
target_dir: str,
|
| 24 |
+
system_prompt: str,
|
| 25 |
+
precompute_len: int,
|
| 26 |
+
k_caches: List[np.ndarray],
|
| 27 |
+
v_caches: List[np.ndarray],
|
| 28 |
+
metadata: Optional[Dict] = None
|
| 29 |
+
) -> bool:
|
| 30 |
+
try:
|
| 31 |
+
target_path = Path(target_dir)
|
| 32 |
+
target_path.mkdir(parents=True, exist_ok=True)
|
| 33 |
+
|
| 34 |
+
for i, (k, v) in enumerate(zip(k_caches, v_caches)):
|
| 35 |
+
k.astype(self.dtype).tofile(target_path / f"k_cache_{i}.bin")
|
| 36 |
+
v.astype(self.dtype).tofile(target_path / f"v_cache_{i}.bin")
|
| 37 |
+
|
| 38 |
+
config = {
|
| 39 |
+
"precompute_len": precompute_len,
|
| 40 |
+
"system_prompt": system_prompt,
|
| 41 |
+
"axmodel_num": self.axmodel_num,
|
| 42 |
+
"dtype": str(self.dtype),
|
| 43 |
+
"metadata": metadata or {},
|
| 44 |
+
}
|
| 45 |
+
with open(target_path / "config.json", "w", encoding="utf8") as f:
|
| 46 |
+
json.dump(config, f, indent=2, ensure_ascii=False)
|
| 47 |
+
|
| 48 |
+
return True
|
| 49 |
+
except Exception as e:
|
| 50 |
+
print(f"Save failed: {str(e)}")
|
| 51 |
+
return False
|
| 52 |
+
|
| 53 |
+
def load_kvcache(
|
| 54 |
+
self,
|
| 55 |
+
cache_dir: str
|
| 56 |
+
) -> Tuple[
|
| 57 |
+
List[np.ndarray],
|
| 58 |
+
List[np.ndarray],
|
| 59 |
+
str,
|
| 60 |
+
int,
|
| 61 |
+
Dict
|
| 62 |
+
]:
|
| 63 |
+
try:
|
| 64 |
+
cache_path = Path(cache_dir)
|
| 65 |
+
k_caches, v_caches = [], []
|
| 66 |
+
|
| 67 |
+
with open(cache_path / "config.json") as f:
|
| 68 |
+
config = json.load(f)
|
| 69 |
+
|
| 70 |
+
if config["axmodel_num"] != self.axmodel_num:
|
| 71 |
+
raise ValueError(
|
| 72 |
+
f"Model layer mismatch: "
|
| 73 |
+
f"Expected {self.axmodel_num}, got {config['axmodel_num']}"
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
for i in range(self.axmodel_num):
|
| 77 |
+
k_data = np.fromfile(cache_path / f"k_cache_{i}.bin", dtype=self.dtype).reshape(1, -1, 256)
|
| 78 |
+
v_data = np.fromfile(cache_path / f"v_cache_{i}.bin", dtype=self.dtype).reshape(1, -1, 256)
|
| 79 |
+
k_caches.append(k_data)
|
| 80 |
+
v_caches.append(v_data)
|
| 81 |
+
|
| 82 |
+
return (
|
| 83 |
+
(k_caches, v_caches),
|
| 84 |
+
config["system_prompt"],
|
| 85 |
+
config["precompute_len"],
|
| 86 |
+
config.get("metadata", {})
|
| 87 |
+
)
|
| 88 |
+
except Exception as e:
|
| 89 |
+
print(f"Load failed: {str(e)}")
|
| 90 |
+
exit()
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class InferManager:
|
| 94 |
+
def __init__(self, hf_model_path: str, axmodel_path: str):
|
| 95 |
+
self.device = "cpu"
|
| 96 |
+
self.hf_model_path = hf_model_path
|
| 97 |
+
self.axmodel_path = axmodel_path
|
| 98 |
+
|
| 99 |
+
self.hf_config = AutoConfig.from_pretrained(self.hf_model_path, trust_remote_code=True)
|
| 100 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.hf_model_path, trust_remote_code=True, use_fast=False)
|
| 101 |
+
self.system_prompt = "你的名字叫小智(allen), 你是一个人畜无害的 AI 助手. 深圳市今天(4月1日)阴天, 愚人节, 气温在 14°C 至 19°C 之间, 微风."
|
| 102 |
+
self.embeds = np.load(f"{self.axmodel_path}/model.embed_tokens.weight.npy")
|
| 103 |
+
|
| 104 |
+
def build_system_prompt(self):
|
| 105 |
+
|
| 106 |
+
messages = [
|
| 107 |
+
{"role": "system", "content": self.system_prompt},
|
| 108 |
+
# {"role": "user", "content": prompt}
|
| 109 |
+
]
|
| 110 |
+
text = self.tokenizer.apply_chat_template(
|
| 111 |
+
messages,
|
| 112 |
+
tokenize=False,
|
| 113 |
+
add_generation_prompt=False
|
| 114 |
+
)
|
| 115 |
+
self.system_inputs = self.tokenizer([text], return_tensors="pt").to(self.device)
|
| 116 |
+
self.system_input_ids = self.system_inputs.input_ids[0].cpu().numpy().tolist()
|
| 117 |
+
self.system_input_embeds = np.take(self.embeds, self.system_input_ids, axis=0)
|
| 118 |
+
self.system_input_ids_len = len(self.system_input_ids)
|
| 119 |
+
self.model_inputs = {
|
| 120 |
+
"input_ids": self.system_input_ids,
|
| 121 |
+
"input_embeds": self.system_input_embeds,
|
| 122 |
+
"input_ids_len": self.system_input_ids_len
|
| 123 |
+
}
|
| 124 |
+
self.precompute_len = self.system_input_ids_len
|
| 125 |
+
# logger.info(f"system prompt prompt ids len: {self.system_input_ids_len}")
|
| 126 |
+
|
| 127 |
+
def encoder_prompt(self, prompt):
|
| 128 |
+
|
| 129 |
+
text = f'<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n'
|
| 130 |
+
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.device)
|
| 131 |
+
input_ids = model_inputs.input_ids[0].cpu().numpy().tolist()
|
| 132 |
+
input_embeds = np.take(self.embeds, input_ids, axis=0)
|
| 133 |
+
input_ids_len = len(input_ids)
|
| 134 |
+
# logger.info(f"user prompt token_len: {input_ids_len}")
|
| 135 |
+
|
| 136 |
+
model_inputs = {
|
| 137 |
+
"message": text,
|
| 138 |
+
"model_inputs": model_inputs,
|
| 139 |
+
"input_ids": input_ids,
|
| 140 |
+
"input_embeds": input_embeds,
|
| 141 |
+
"input_ids_len": input_ids_len
|
| 142 |
+
}
|
| 143 |
+
return model_inputs
|
| 144 |
+
|
| 145 |
+
def build_kvcache(self, kv_cache_len: int = 2559):
|
| 146 |
+
|
| 147 |
+
kv_dim = self.hf_config.hidden_size // self.hf_config.num_attention_heads * self.hf_config.num_key_value_heads
|
| 148 |
+
self.k_caches = [
|
| 149 |
+
np.zeros((1, kv_cache_len, kv_dim), dtype=bfloat16)
|
| 150 |
+
for _ in range(self.hf_config.num_hidden_layers)
|
| 151 |
+
]
|
| 152 |
+
self.v_caches = [
|
| 153 |
+
np.zeros((1, kv_cache_len, kv_dim), dtype=bfloat16)
|
| 154 |
+
for _ in range(self.hf_config.num_hidden_layers)
|
| 155 |
+
]
|
| 156 |
+
|
| 157 |
+
def get_kvcache(self):
|
| 158 |
+
return [self.k_caches, self.v_caches]
|
| 159 |
+
|
| 160 |
+
def update_kvcache(self, update_kv_cache):
|
| 161 |
+
self.k_caches = update_kv_cache[0]
|
| 162 |
+
self.v_caches = update_kv_cache[1]
|
| 163 |
+
|
| 164 |
+
def get_tokenizer(self):
|
| 165 |
+
return self.tokenizer
|
| 166 |
+
|
| 167 |
+
def get_system_prompt(self):
|
| 168 |
+
return self.system_prompt
|
| 169 |
+
|
| 170 |
+
def set_system_prompt(self, prompt):
|
| 171 |
+
self.system_prompt = prompt
|
| 172 |
+
|
| 173 |
+
def build_infer_model(self, ):
|
| 174 |
+
self.prefill_decoder_sessins = []
|
| 175 |
+
|
| 176 |
+
for i in tqdm(range(self.hf_config.num_hidden_layers), desc="Init InferenceSession"):
|
| 177 |
+
session = InferenceSession(
|
| 178 |
+
f"{self.axmodel_path}/qwen2_p128_l{i}_together.axmodel"
|
| 179 |
+
)
|
| 180 |
+
self.prefill_decoder_sessins.append(session)
|
| 181 |
+
|
| 182 |
+
self.post_process_session = InferenceSession(
|
| 183 |
+
f"{self.axmodel_path}/qwen2_post.axmodel"
|
| 184 |
+
)
|
| 185 |
+
print("The models have been loaded!")
|
| 186 |
+
|
| 187 |
+
def get_infer_session(self):
|
| 188 |
+
return [self.prefill_decoder_sessins, self.post_process_session]
|
| 189 |
+
|
| 190 |
+
@staticmethod
|
| 191 |
+
def _top_p(probs: np.ndarray, p: float) -> np.ndarray:
|
| 192 |
+
sorted_indices = np.argsort(probs)
|
| 193 |
+
filtered = probs.copy()
|
| 194 |
+
cumulative = 0
|
| 195 |
+
for idx in sorted_indices[::-1]:
|
| 196 |
+
if cumulative >= p:
|
| 197 |
+
filtered[idx] = 0
|
| 198 |
+
cumulative += filtered[idx]
|
| 199 |
+
return filtered / cumulative
|
| 200 |
+
|
| 201 |
+
@staticmethod
|
| 202 |
+
def _softmax(logits: np.ndarray) -> np.ndarray:
|
| 203 |
+
logits = logits - logits.max()
|
| 204 |
+
exp_logits = np.exp(logits)
|
| 205 |
+
return (exp_logits / np.sum(exp_logits)).astype(np.float64)
|
| 206 |
+
|
| 207 |
+
def post_process(self, logits, top_k=1, top_p=0.9, temperature=0.6):
|
| 208 |
+
logits = logits.astype(np.float32).flatten()
|
| 209 |
+
candidate_indices = np.argpartition(logits, -top_k)[-top_k:]
|
| 210 |
+
candidate_logits = logits[candidate_indices] / temperature
|
| 211 |
+
candidate_probs = self._softmax(candidate_logits)
|
| 212 |
+
candidate_probs = self._top_p(candidate_probs, top_p)
|
| 213 |
+
candidate_probs = candidate_probs.astype(np.float64) / candidate_probs.sum()
|
| 214 |
+
chosen_idx = np.random.multinomial(1, candidate_probs).argmax()
|
| 215 |
+
next_token = candidate_indices[chosen_idx]
|
| 216 |
+
return next_token, candidate_indices, candidate_probs
|
| 217 |
+
|
| 218 |
+
def gen_slice_indices(self, token_len, prefill=128, expand=128):
|
| 219 |
+
remaining = max(0, token_len - prefill)
|
| 220 |
+
extra_blocks = (remaining + expand - 1) // expand
|
| 221 |
+
return list(range(extra_blocks + 1))
|
| 222 |
+
|
| 223 |
+
def prefill(
|
| 224 |
+
self,
|
| 225 |
+
model_inputs,
|
| 226 |
+
slice_len=128,
|
| 227 |
+
precompute_len=0, # system prompt prefill 的时候, 只能设置为 0
|
| 228 |
+
):
|
| 229 |
+
"""
|
| 230 |
+
Prefill step for chunked inference.
|
| 231 |
+
"""
|
| 232 |
+
token_ids = model_inputs["input_ids"]
|
| 233 |
+
token_embeds = model_inputs["input_embeds"]
|
| 234 |
+
token_len = model_inputs["input_ids_len"]
|
| 235 |
+
|
| 236 |
+
seq_len = len(token_ids)
|
| 237 |
+
slice_indices = [i for i in range(seq_len // slice_len + 1)]
|
| 238 |
+
print(f"slice_indices: {slice_indices}")
|
| 239 |
+
# total_prefill_len = (
|
| 240 |
+
# slice_len * slice_indices[-1]
|
| 241 |
+
# if slice_indices[-1] != 0
|
| 242 |
+
# else slice_len
|
| 243 |
+
# )
|
| 244 |
+
# slice_indices = self.gen_slice_indices(seq_len)
|
| 245 |
+
total_prefill_len = slice_len * (slice_indices[-1] + 1)
|
| 246 |
+
kv_mask_expand_len = 128
|
| 247 |
+
|
| 248 |
+
if total_prefill_len > 0:
|
| 249 |
+
for slice_index in slice_indices:
|
| 250 |
+
if slice_index == 0:
|
| 251 |
+
current_slice_len = slice_len
|
| 252 |
+
else:
|
| 253 |
+
current_slice_len = kv_mask_expand_len
|
| 254 |
+
|
| 255 |
+
indices = np.array(
|
| 256 |
+
list(
|
| 257 |
+
range(
|
| 258 |
+
precompute_len + slice_index * slice_len,
|
| 259 |
+
precompute_len + (slice_index + 1) * slice_len,
|
| 260 |
+
)
|
| 261 |
+
),
|
| 262 |
+
np.uint32,
|
| 263 |
+
).reshape((1, slice_len))
|
| 264 |
+
indices[:, min(token_len, slice_len):] = 0
|
| 265 |
+
|
| 266 |
+
mask = (
|
| 267 |
+
np.zeros((1, slice_len, current_slice_len * slice_index + slice_len))
|
| 268 |
+
- 65536
|
| 269 |
+
)
|
| 270 |
+
data = np.zeros((1, slice_len, self.hf_config.hidden_size)).astype(bfloat16)
|
| 271 |
+
|
| 272 |
+
for i, t in enumerate(
|
| 273 |
+
range(
|
| 274 |
+
slice_index * slice_len,
|
| 275 |
+
(slice_index + 1) * slice_len,
|
| 276 |
+
)
|
| 277 |
+
):
|
| 278 |
+
if t < len(token_ids):
|
| 279 |
+
# mask[:, i, 0: slice_index * slice_len + i + 1] = 0
|
| 280 |
+
data[:, i : i + 1, :] = (
|
| 281 |
+
token_embeds[t]
|
| 282 |
+
.reshape((1, 1, self.hf_config.hidden_size))
|
| 283 |
+
.astype(bfloat16)
|
| 284 |
+
)
|
| 285 |
+
if t < len(token_ids) + precompute_len:
|
| 286 |
+
mask[:, i, 0: slice_index * slice_len + i + 1] = 0
|
| 287 |
+
|
| 288 |
+
if slice_index == slice_indices[-1]:
|
| 289 |
+
curlen_procd = token_len - slice_index * slice_len # curlen_procd 是当前处理数据的长度
|
| 290 |
+
else:
|
| 291 |
+
curlen_procd = slice_len
|
| 292 |
+
|
| 293 |
+
mask = mask.astype(bfloat16)
|
| 294 |
+
for i in range(self.hf_config.num_hidden_layers):
|
| 295 |
+
input_feed = {
|
| 296 |
+
"K_cache": (
|
| 297 |
+
self.k_caches[i][:, 0: current_slice_len * slice_index, :]
|
| 298 |
+
if slice_index
|
| 299 |
+
else np.zeros((1, 1, self.hf_config.hidden_size), dtype=bfloat16)
|
| 300 |
+
),
|
| 301 |
+
"V_cache": (
|
| 302 |
+
self.v_caches[i][:, 0: current_slice_len * slice_index, :]
|
| 303 |
+
if slice_index
|
| 304 |
+
else np.zeros((1, 1, self.hf_config.hidden_size), dtype=bfloat16)
|
| 305 |
+
),
|
| 306 |
+
"indices": indices,
|
| 307 |
+
"input": data,
|
| 308 |
+
"mask": mask,
|
| 309 |
+
}
|
| 310 |
+
outputs = self.prefill_decoder_sessins[i].run(None, input_feed, shape_group=slice_index + 1)
|
| 311 |
+
self.k_caches[i][
|
| 312 |
+
:,
|
| 313 |
+
slice_index
|
| 314 |
+
* slice_len + precompute_len : slice_index
|
| 315 |
+
* slice_len + curlen_procd + precompute_len,
|
| 316 |
+
:,
|
| 317 |
+
] = outputs[0][:, :curlen_procd, :]
|
| 318 |
+
|
| 319 |
+
self.v_caches[i][
|
| 320 |
+
:,
|
| 321 |
+
slice_index
|
| 322 |
+
* slice_len + precompute_len: slice_index
|
| 323 |
+
* slice_len + curlen_procd + precompute_len,
|
| 324 |
+
:,
|
| 325 |
+
] = outputs[1][:, :curlen_procd, :]
|
| 326 |
+
|
| 327 |
+
data = outputs[2]
|
| 328 |
+
|
| 329 |
+
print("slice prefill done", slice_index)
|
| 330 |
+
else:
|
| 331 |
+
print("No prefill needed.")
|
| 332 |
+
# return "Calculated the kv cache of the system prompt."
|
| 333 |
+
return (self.k_caches, self.v_caches)
|
| 334 |
+
|
| 335 |
+
def decode(
|
| 336 |
+
self,
|
| 337 |
+
token_ids,
|
| 338 |
+
prefill_len=128,
|
| 339 |
+
slice_len=128
|
| 340 |
+
):
|
| 341 |
+
token_len = len(token_ids)
|
| 342 |
+
# set to decoder
|
| 343 |
+
print("answer: >> ", end='', flush=True)
|
| 344 |
+
kv_cache_len = 2559
|
| 345 |
+
mask = np.zeros((1, 1, kv_cache_len + 1), dtype=np.float32).astype(bfloat16)
|
| 346 |
+
mask[:, :, :kv_cache_len] -= 65536
|
| 347 |
+
if prefill_len > 0:
|
| 348 |
+
mask[:, :, :token_len + self.precompute_len] = 0
|
| 349 |
+
|
| 350 |
+
for start_indice in range(kv_cache_len):
|
| 351 |
+
if self.precompute_len > 0 and start_indice < self.precompute_len:
|
| 352 |
+
continue
|
| 353 |
+
next_token = token_ids[start_indice - self.precompute_len]
|
| 354 |
+
indices = np.array([start_indice], np.uint32).reshape((1, 1))
|
| 355 |
+
data = self.embeds[next_token, :].reshape((1, 1, self.hf_config.hidden_size)).astype(bfloat16)
|
| 356 |
+
for i in range(self.hf_config.num_hidden_layers):
|
| 357 |
+
input_feed = {
|
| 358 |
+
"K_cache": self.k_caches[i],
|
| 359 |
+
"V_cache": self.v_caches[i],
|
| 360 |
+
"indices": indices,
|
| 361 |
+
"input": data,
|
| 362 |
+
"mask": mask,
|
| 363 |
+
}
|
| 364 |
+
outputs = self.prefill_decoder_sessins[i].run(None, input_feed, shape_group=0)
|
| 365 |
+
self.k_caches[i][:, start_indice, :] = outputs[0][:, :, :]
|
| 366 |
+
self.v_caches[i][:, start_indice, :] = outputs[1][:, :, :]
|
| 367 |
+
data = outputs[2]
|
| 368 |
+
mask[..., start_indice] = 0
|
| 369 |
+
if start_indice < token_len + self.precompute_len - 1:
|
| 370 |
+
pass
|
| 371 |
+
else:
|
| 372 |
+
post_out = self.post_process_session.run(None, {"input": data})[0]
|
| 373 |
+
next_token, posssible_tokens, possible_soft = self.post_process(post_out)
|
| 374 |
+
token_ids.append(next_token)
|
| 375 |
+
print(self.tokenizer.decode(next_token, skip_special_tokens=True), end='', flush=True)
|
| 376 |
+
|
| 377 |
+
if next_token == self.tokenizer.eos_token_id and start_indice > token_len + self.precompute_len:
|
| 378 |
+
# print("\n>> HINT: The next_token encountered EOS token, generation completed.")
|
| 379 |
+
break
|
| 380 |
+
print("\n")
|
| 381 |
+
self.precompute_len = len(token_ids) + self.precompute_len - 1
|
| 382 |
+
return self.tokenizer.decode(token_ids[self.precompute_len - 1:], skip_special_tokens=True)
|
| 383 |
+
|