--- library_name: transformers license: mit language: - ja pipeline_tag: image-text-to-text --- # [EZO model card] ![image/png](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/FrKFjIqieua3tD32CeECS.png) ## [Model Information] Based on the InternVL2-26B, this model has improved performance, especially in image recognition and Japanese language performance, by employing multiple tuning methods. It excels in Japanese language tasks, it's designed to meet diverse needs globally. InternVL2-26Bをベースとして、複数のチューニング手法を採用のうえ、画像認識と日本語性能におけるHeronタスクを中心に、性能を向上させたモデルです。 同様の手法でトレーニングを行うことで、世界中の多様なニーズに応えることができる設計となっています。 ### [Benchmark Results] ![image/png](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/aAliaz1qk_9We8xNqPfkr.png) **Terms of Use**: This model is based on InternVL2-26B and is Mit. このモデルはInternVL2-26Bをベースにしており、Mitとしています。 - **Developed by:** Axcxept co., ltd. - **Language(s) (NLP): English, Japanese ## [Usage] ### INSTALL ` pip install -U transformers==4.37.2 sentencepiece ` ### Model Loading #### 16-bit (bf16 / fp16) ```python import torch from transformers import AutoTokenizer, AutoModel path = "HODACHI/EZO-InternVL2-26B" model = AutoModel.from_pretrained( path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True).eval().cuda() ``` #### BNB 8-bit Quantization ```python import torch from transformers import AutoTokenizer, AutoModel path = "HODACHI/EZO-InternVL2-26B" model = AutoModel.from_pretrained( path, torch_dtype=torch.bfloat16, load_in_8bit=True, low_cpu_mem_usage=True, trust_remote_code=True).eval() ``` #### BNB 4-bit Quantization > **⚠️ Warning:** Due to significant quantization errors with BNB 4-bit quantization on InternViT-6B, the model may produce nonsensical outputs and fail to understand images. Therefore, please avoid using BNB 4-bit quantization. #### Multiple GPUs The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors. このようにコードを書く理由は、テンソルが同じデバイス上にないためにマルチGPU推論中に発生するエラーを避けるためです。 ラージ・ランゲージ・モデル(LLM)の最初のレイヤーと最後のレイヤーが同じデバイス上にあるようにすることで、このようなエラーを防ぐことができます。 ```python import math import torch from transformers import AutoTokenizer, AutoModel def split_model(model_name): device_map = {} world_size = torch.cuda.device_count() num_layers = { 'InternVL2-1B': 24, 'InternVL2-2B': 24, 'InternVL2-4B': 32, 'InternVL2-8B': 32, 'InternVL2-26B': 48, 'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name] # Since the first GPU will be used for ViT, treat it as half a GPU. num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5)) num_layers_per_gpu = [num_layers_per_gpu] * world_size num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5) layer_cnt = 0 for i, num_layer in enumerate(num_layers_per_gpu): for j in range(num_layer): device_map[f'language_model.model.layers.{layer_cnt}'] = i layer_cnt += 1 device_map['vision_model'] = 0 device_map['mlp1'] = 0 device_map['language_model.model.tok_embeddings'] = 0 device_map['language_model.model.embed_tokens'] = 0 device_map['language_model.output'] = 0 device_map['language_model.model.norm'] = 0 device_map['language_model.lm_head'] = 0 device_map[f'language_model.model.layers.{num_layers - 1}'] = 0 return device_map path = "HODACHI/EZO-InternVL2-26B" device_map = split_model('InternVL2-26B') model = AutoModel.from_pretrained( path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True, device_map=device_map).eval() ``` ### Inference with Transformers ```python import numpy as np import torch import torchvision.transforms as T from decord import VideoReader, cpu from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, input_size=448, max_num=12): image = Image.open(image_file).convert('RGB') transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values # If you have an 80G A100 GPU, you can put the entire model on a single GPU. # Otherwise, you need to load a model using multiple GPUs, please refer to the `Multiple GPUs` section. path = 'HODACHI/EZO-InternVL2-26B' model = AutoModel.from_pretrained( path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True).eval().cuda() tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) # set the max number of tiles in `max_num` pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda() generation_config = dict(max_new_tokens=1024, do_sample=False) # pure-text conversation (テキストのみの対話) question = 'Hello, who are you?' response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'Can you tell me a story?' response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') # single-image single-round conversation (単一画像、単一ラウンド対話) question = '\nPlease describe the image shortly.' response = model.chat(tokenizer, pixel_values, question, generation_config) print(f'User: {question}\nAssistant: {response}') # single-image multi-round conversation (単一画像、多ラウンド対話) question = '\nPlease describe the image in detail.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'Please write a poem according to the image.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') # multi-image multi-round conversation, combined images (複数画像、複数ラウンド対話、画像のステッチング) pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) question = '\nDescribe the two images in detail.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'What are the similarities and differences between these two images.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') # multi-image multi-round conversation, separate images (別々の画像による多画像多ラウンド対話) pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)] question = 'Image-1: \nImage-2: \nDescribe the two images in detail.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'What are the similarities and differences between these two images.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') # batch inference, single image per sample (単一画像バッチ処理) pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda() pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda() num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)] pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) questions = ['\nDescribe the image in detail.'] * len(num_patches_list) responses = model.batch_chat(tokenizer, pixel_values, num_patches_list=num_patches_list, questions=questions, generation_config=generation_config) for question, response in zip(questions, responses): print(f'User: {question}\nAssistant: {response}') # video multi-round conversation (ビデオ・マルチラウンド・ダイアログ) def get_index(bound, fps, max_frame, first_idx=0, num_segments=32): if bound: start, end = bound[0], bound[1] else: start, end = -100000, 100000 start_idx = max(first_idx, round(start * fps)) end_idx = min(round(end * fps), max_frame) seg_size = float(end_idx - start_idx) / num_segments frame_indices = np.array([ int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(num_segments) ]) return frame_indices def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32): vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) max_frame = len(vr) - 1 fps = float(vr.get_avg_fps()) pixel_values_list, num_patches_list = [], [] transform = build_transform(input_size=input_size) frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments) for frame_index in frame_indices: img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB') img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(tile) for tile in img] pixel_values = torch.stack(pixel_values) num_patches_list.append(pixel_values.shape[0]) pixel_values_list.append(pixel_values) pixel_values = torch.cat(pixel_values_list) return pixel_values, num_patches_list video_path = './examples/red-panda.mp4' pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1) pixel_values = pixel_values.to(torch.bfloat16).cuda() video_prefix = ''.join([f'Frame{i+1}: \n' for i in range(len(num_patches_list))]) question = video_prefix + 'What is the red panda doing?' # Frame1: \nFrame2: \n...\nFrame8: \n{question} response, history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=None, return_history=True) print(f'User: {question}\nAssistant: {response}') question = 'Describe this video in detail. Don\'t repeat.' response, history = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=history, return_history=True) print(f'User: {question}\nAssistant: {response}') ``` #### Streaming output Besides this method, you can also use the following code to get streamed output. ```python from transformers import TextIteratorStreamer from threading import Thread # Initialize the streamer streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10) # Define the generation configuration generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer) # Start the model chat in a separate thread thread = Thread(target=model.chat, kwargs=dict( tokenizer=tokenizer, pixel_values=pixel_values, question=question, history=None, return_history=False, generation_config=generation_config, )) thread.start() # Initialize an empty string to store the generated text generated_text = '' # Loop through the streamer to get the new text as it is generated for new_text in streamer: if new_text == model.conv_template.sep: break generated_text += new_text print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line ``` ## Finetune SWIFT from ModelScope community has supported the fine-tuning (Image/Video) of InternVL, please check [this link](https://github.com/modelscope/swift/blob/main/docs/source_en/Multi-Modal/internvl-best-practice.md) for more details. ## Deployment ### LMDeploy LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams. ```sh pip install lmdeploy ``` LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline. #### A 'Hello, world' example ```python from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig from lmdeploy.vl import load_image model = 'HODACHI/EZO-InternVL2-26B' system_prompt = 'あなたは優秀な、マルチモーダル大規模言語モデルである。' image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg') chat_template_config = ChatTemplateConfig('internvl-internlm2') chat_template_config.meta_instruction = system_prompt pipe = pipeline(model, chat_template_config=chat_template_config, backend_config=TurbomindEngineConfig(session_len=8192)) response = pipe(('describe this image', image)) print(response.text) ``` If `ImportError` occurs while executing this case, please install the required dependency packages as prompted. #### Multi-images inference When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased. > Warning: Due to the scarcity of multi-image conversation data, the performance on multi-image tasks may be unstable, and it may require multiple attempts to achieve satisfactory results. ```python from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig from lmdeploy.vl import load_image from lmdeploy.vl.constants import IMAGE_TOKEN model = 'HODACHI/EZO-InternVL2-26B' system_prompt = 'あなたは優秀な、マルチモーダル大規模言語モデルである。' chat_template_config = ChatTemplateConfig('internvl-internlm2') chat_template_config.meta_instruction = system_prompt pipe = pipeline(model, chat_template_config=chat_template_config, backend_config=TurbomindEngineConfig(session_len=8192)) image_urls=[ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg', 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg' ] images = [load_image(img_url) for img_url in image_urls] # Numbering images improves multi-image conversations response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images)) print(response.text) ``` #### Batch prompts inference Conducting inference with batch prompts is quite straightforward; just place them within a list structure: ```python from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig from lmdeploy.vl import load_image model = 'HODACHI/EZO-InternVL2-26B' system_prompt = 'あなたは優秀な、マルチモーダル大規模言語モデルである。' chat_template_config = ChatTemplateConfig('internvl-internlm2') chat_template_config.meta_instruction = system_prompt pipe = pipeline(model, chat_template_config=chat_template_config, backend_config=TurbomindEngineConfig(session_len=8192)) image_urls=[ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg", "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg" ] prompts = [('describe this image', load_image(img_url)) for img_url in image_urls] response = pipe(prompts) print(response) ``` #### Multi-turn conversation There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface. ```python from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig, GenerationConfig from lmdeploy.vl import load_image model = 'HODACHI/EZO-InternVL2-26B' system_prompt = 'あなたは優秀な、マルチモーダル大規模言語モデルです' chat_template_config = ChatTemplateConfig('internvl-internlm2') chat_template_config.meta_instruction = system_prompt pipe = pipeline(model, chat_template_config=chat_template_config, backend_config=TurbomindEngineConfig(session_len=8192)) image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg') gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8) sess = pipe.chat(('describe this image', image), gen_config=gen_config) print(sess.response.text) sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config) print(sess.response.text) ``` ### [Model Data] #### Training Dataset] We extracted high-quality data from Japanese Wikipedia and FineWeb to create instruction data. Our innovative training approach allows for performance improvements across various languages and domains, making the model suitable for global use despite its focus on Japanese data. 日本語のWikiデータおよび、FineWebから良質なデータ、画像分類を抽出し、Instructionデータを作成しました。 このモデルでは日本語に特化させていますが、世界中のどんなユースケースでも利用可能なアプローチです。 https://huggingface.co/datasets/legacy-datasets/wikipedia https://huggingface.co/datasets/HuggingFaceFW/fineweb https://huggingface.co/datasets/STIC-LVLM/stic-coco-preference-6k/blob/main/images.zip #### Data Preprocessing We used a plain instruction tuning method to train the model on exemplary responses. This approach enhances the model's ability to understand and generate high-quality responses across various languages and contexts. プレインストラクトチューニング手法を用いて、模範的回答を学習させました。この手法により、モデルは様々な言語やコンテキストにおいて高品質な応答を理解し生成する能力が向上しています。 #### Implementation Information [Pre-Instruction Training] https://huggingface.co/instruction-pretrain/instruction-synthesizer ### [Disclaimer] このモデルは研究開発のみを目的として提供されるものであり、実験的なプロトタイプとみなされるべきモデルです。 商業的な使用やミッションクリティカルな環境への配備を意図したものではありません。 本モデルの使用は、使用者の責任において行われるものとし、その性能および結果は保証されません。 Axcxept株式会社は、直接的、間接的、特別、偶発的、結果的な損害、または本モデルの使用から生じるいかなる損失に対しても、得られた結果にかかわらず、一切の責任を負いません。 利用者は、本モデルの使用に伴うリスクを十分に理解し、自己の判断で使用するものとします。 ### [Hardware] H100 × 8(Running in 8h) ### [We are.] [![Axcxept logo](https://cdn-uploads.huggingface.co/production/uploads/657e900beaad53ff67ba84db/8OKW86U986ywttvL2RcbG.png)](https://axcxept.com)