--- license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer model-index: - name: detr-resnet-50_finetuned_cppe5 results: [] --- # detr-resnet-50_finetuned_cppe5 This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on cppe5 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and testing data [CPPE5 dataset](https://huggingface.co/datasets/cppe-5) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results Accumulating evaluation results... DONE (t=0.02s). IoU metric: bbox Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.272 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.504 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.254 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.131 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.154 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.300 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.264 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.446 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.455 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.143 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.265 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.516 ### Framework versions - Transformers 4.39.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2