import torch import torch.nn as nn import torch.nn.functional as F import torch.fft import math class Inception_Block_V1(nn.Module): def __init__(self, in_channels, out_channels, num_kernels=6, init_weight=True): super(Inception_Block_V1, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.num_kernels = num_kernels kernels = [] for i in range(self.num_kernels): kernels.append(nn.Conv2d(in_channels, out_channels, kernel_size=2 * i + 1, padding=i)) self.kernels = nn.ModuleList(kernels) if init_weight: self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): res_list = [] for i in range(self.num_kernels): res_list.append(self.kernels[i](x)) res = torch.stack(res_list, dim=-1).mean(-1) return res class PositionalEmbedding(nn.Module): def __init__(self, d_model, max_len=5000): super(PositionalEmbedding, self).__init__() # Compute the positional encodings once in log space. pe = torch.zeros(max_len, d_model).float() pe.require_grad = False position = torch.arange(0, max_len).float().unsqueeze(1) div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp() pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): return self.pe[:, :x.size(1)] class FixedEmbedding(nn.Module): def __init__(self, c_in, d_model): super(FixedEmbedding, self).__init__() w = torch.zeros(c_in, d_model).float() w.require_grad = False position = torch.arange(0, c_in).float().unsqueeze(1) div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp() w[:, 0::2] = torch.sin(position * div_term) w[:, 1::2] = torch.cos(position * div_term) self.emb = nn.Embedding(c_in, d_model) self.emb.weight = nn.Parameter(w, requires_grad=False) def forward(self, x): return self.emb(x).detach() class TemporalEmbedding(nn.Module): def __init__(self, d_model, embed_type='fixed', freq='h'): super(TemporalEmbedding, self).__init__() hour_size = 96 weekday_size = 7 Embed = FixedEmbedding if embed_type == 'fixed' else nn.Embedding self.hour_embed = Embed(hour_size, d_model) self.weekday_embed = Embed(weekday_size, d_model) def forward(self, x): x = x.long() hour_x = self.hour_embed(x[:, :, 0]) weekday_x = self.weekday_embed(x[:, :, 1]) return hour_x + weekday_x class TokenEmbedding(nn.Module): def __init__(self, c_in, d_model): super(TokenEmbedding, self).__init__() padding = 1 if torch.__version__ >= '1.5.0' else 2 self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model, kernel_size=3, padding=padding, padding_mode='circular', bias=False) for m in self.modules(): if isinstance(m, nn.Conv1d): nn.init.kaiming_normal_( m.weight, mode='fan_in', nonlinearity='leaky_relu') def forward(self, x): x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2) return x class DataEmbedding(nn.Module): def __init__(self, c_in, d_model, embed_type='fixed', freq='h', dropout=0.1): super(DataEmbedding, self).__init__() self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model) self.position_embedding = PositionalEmbedding(d_model=d_model) self.temporal_embedding = TemporalEmbedding(d_model=d_model, embed_type=embed_type, freq=freq) self.dropout = nn.Dropout(p=dropout) def forward(self, x, x_mark): if x_mark is None: x = self.value_embedding(x) + self.position_embedding(x) else: x = self.value_embedding( x) + self.temporal_embedding(x_mark) + self.position_embedding(x) return self.dropout(x) def FFT_for_Period(x, k=2): # [B, T, C] xf = torch.fft.rfft(x, dim=1) # find period by amplitudes frequency_list = abs(xf).mean(0).mean(-1) frequency_list[0] = 0 _, top_list = torch.topk(frequency_list, k) top_list = top_list.detach().cpu().numpy() period = x.shape[1] // top_list return period, abs(xf).mean(-1)[:, top_list] class TimesBlock(nn.Module): def __init__(self, seq_len, pred_len, top_k, d_model, d_ff, num_kernels): super(TimesBlock, self).__init__() self.seq_len = seq_len self.pred_len = pred_len self.k = top_k # parameter-efficient design self.conv = nn.Sequential( Inception_Block_V1(d_model, d_ff, num_kernels=num_kernels), nn.GELU(), Inception_Block_V1(d_ff, d_model, num_kernels=num_kernels) ) def forward(self, x): B, T, N = x.size() period_list, period_weight = FFT_for_Period(x, self.k) res = [] for i in range(self.k): period = period_list[i] # padding if (self.seq_len + self.pred_len) % period != 0: length = ( ((self.seq_len + self.pred_len) // period) + 1) * period padding = torch.zeros([x.shape[0], (length - (self.seq_len + self.pred_len)), x.shape[2]]).to(x.device) out = torch.cat([x, padding], dim=1) else: length = (self.seq_len + self.pred_len) out = x # reshape out = out.reshape(B, length // period, period, N).permute(0, 3, 1, 2).contiguous() # 2D conv: from 1d Variation to 2d Variation out = self.conv(out) # reshape back out = out.permute(0, 2, 3, 1).reshape(B, -1, N) res.append(out[:, :(self.seq_len + self.pred_len), :]) res = torch.stack(res, dim=-1) # adaptive aggregation period_weight = F.softmax(period_weight, dim=1) period_weight = period_weight.unsqueeze( 1).unsqueeze(1).repeat(1, T, N, 1) res = torch.sum(res * period_weight, -1) # residual connection res = res + x return res class TimesNet(nn.Module): """ Paper link: https://openreview.net/pdf?id=ju_Uqw384Oq """ def __init__( self, enc_in, dec_in, c_out, pred_len, seq_len, output_attention = False, data_idx = [0,3,4,5,6,7], time_idx = [1,2], d_model = 16, d_ff = 64, e_layers = 2, top_k = 5, num_kernels = 2, dropout = 0.1 ): super(TimesNet, self).__init__() self.data_idx = data_idx self.time_idx = time_idx self.dec_in = dec_in self.seq_len = seq_len self.pred_len = pred_len self.model = nn.ModuleList([TimesBlock(seq_len, pred_len, top_k, d_model, d_ff, num_kernels) for _ in range(e_layers)]) self.enc_embedding = DataEmbedding(enc_in, d_model, 'fixed', 'h', dropout) self.layer = e_layers self.layer_norm = nn.LayerNorm(d_model) self.predict_linear = nn.Linear( self.seq_len, self.pred_len + self.seq_len) self.projection = nn.Linear( d_model, c_out, bias=True) def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec): # Normalization from Non-stationary Transformer means = x_enc.mean(1, keepdim=True).detach() x_enc = x_enc - means stdev = torch.sqrt( torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5) x_enc /= stdev # embedding enc_out = self.enc_embedding(x_enc, x_mark_enc) # [B,T,C] enc_out = self.predict_linear(enc_out.permute(0, 2, 1)).permute( 0, 2, 1) # align temporal dimension # TimesNet for i in range(self.layer): enc_out = self.layer_norm(self.model[i](enc_out)) # porject back dec_out = self.projection(enc_out) # De-Normalization from Non-stationary Transformer dec_out = dec_out * \ (stdev[:, 0, :].unsqueeze(1).repeat( 1, self.pred_len + self.seq_len, 1)) dec_out = dec_out + \ (means[:, 0, :].unsqueeze(1).repeat( 1, self.pred_len + self.seq_len, 1)) return dec_out def forward(self, x, fut_time): x_enc = x[:,:,self.data_idx] x_mark_enc = x[:,:,self.time_idx] x_dec = torch.zeros((fut_time.shape[0],fut_time.shape[1],self.dec_in),dtype=fut_time.dtype,device=fut_time.device) x_mark_dec = fut_time return self.forecast(x_enc,x_mark_enc,x_dec,x_mark_dec)[:,-1,[0]]