[nlp] lang = "eds" pipeline = ["ner"] [nlp.tokenizer] @tokenizers = "eds.tokenizer" [components] [components.ner] @factory = "eds.ner_crf" target_span_getter = "gold_spans" labels = ["anatomie", "date", "dose", "duree", "examen", "frequence", "mode", "moment", "pathologie", "sosy", "substance", "traitement", "valeur"] infer_span_setter = true mode = "joint" window = 40 stride = 20 [components.ner.embedding] @factory = "eds.text_cnn" kernel_sizes = [3] [components.ner.embedding.embedding] @factory = "eds.transformer" model = "./ner/embedding/embedding" window = 128 stride = 96 [components.ner.span_setter] ents = true * = true gold_spans = ["anatomie", "date", "dose", "duree", "examen", "frequence", "mode", "moment", "pathologie", "sosy", "substance", "traitement", "valeur"]