--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-Lesion-Classification-HAM10000-AH results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: Augmented-Final split: train args: Augmented-Final metrics: - name: Accuracy type: accuracy value: 0.9681397738951696 --- # swinv2-large-patch4-window12to16-192to256-22kto1k-ft-finetuned-Lesion-Classification-HAM10000-AH This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1143 - Accuracy: 0.9681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.9 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9527 | 1.0 | 122 | 1.9746 | 0.1716 | | 1.818 | 2.0 | 244 | 1.7423 | 0.3628 | | 1.5044 | 3.0 | 366 | 1.3707 | 0.5046 | | 1.1173 | 4.0 | 488 | 0.9796 | 0.6300 | | 0.8714 | 5.0 | 610 | 0.7475 | 0.7379 | | 0.8631 | 6.0 | 732 | 0.5978 | 0.7729 | | 0.628 | 7.0 | 854 | 0.4791 | 0.8212 | | 0.5588 | 8.0 | 976 | 0.3517 | 0.8705 | | 0.5632 | 9.0 | 1098 | 0.2564 | 0.9168 | | 0.3693 | 10.0 | 1220 | 0.1875 | 0.9455 | | 0.321 | 11.0 | 1342 | 0.1525 | 0.9424 | | 0.2761 | 12.0 | 1464 | 0.1143 | 0.9681 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3