File size: 2,089 Bytes
50a6960 6f8b56e b7e79ac 6f8b56e 50a6960 f6a9295 287130f aca3b43 eb05d16 ac026fe b7e79ac 6f8b56e 50a6960 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
base_model: bert-base-chinese
tags:
- generated_from_keras_callback
model-index:
- name: AIYIYA/my_1
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# AIYIYA/my_1
This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.1600
- Validation Loss: 1.4880
- Train Accuracy: 0.7195
- Epoch: 7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 300, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 3.3536 | 3.0356 | 0.2195 | 0 |
| 2.8571 | 2.6364 | 0.3902 | 1 |
| 2.4461 | 2.2839 | 0.4634 | 2 |
| 2.0491 | 2.0340 | 0.5122 | 3 |
| 1.7890 | 1.7980 | 0.6463 | 4 |
| 1.5356 | 1.6520 | 0.6951 | 5 |
| 1.3215 | 1.5640 | 0.7195 | 6 |
| 1.1600 | 1.4880 | 0.7195 | 7 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.13.1
- Tokenizers 0.13.3
|