import numpy as np import pandas as pd import os import json import random import torch import torch.nn as nn import torch.optim as optim from sklearn.ensemble import IsolationForest from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from deap import base, creator, tools, algorithms from transformers import AutoModelForCausalLM, AutoTokenizer, AutoFeatureExtractor from transformers import pipeline from sentence_transformers import SentenceTransformer from textblob import TextBlob import speech_recognition as sr from PIL import Image import cv2 from googletrans import Translator import onnx import onnxruntime from torch.quantization import quantize_dynamic, quantize_static, prepare, convert import torch.nn.functional as F # Enable CUDA if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Initialize Example Emotions Dataset data = { 'context': [ 'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm', 'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated', 'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated', 'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic', 'I am pessimistic', 'I feel bored', 'I am envious' ], 'emotion': [ 'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger', 'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust', 'disgust', 'optimism', 'pessimism', 'boredom', 'envy' ] } df = pd.DataFrame(data) # Encoding the contexts using One-Hot Encoding encoder = OneHotEncoder(handle_unknown='ignore') contexts_encoded = encoder.fit_transform(df[['context']]).toarray() # Encoding emotions emotions_target = df['emotion'].astype('category').cat.codes emotion_classes = df['emotion'].astype('category').cat.categories # Neural Network for Emotional Processing class EmotionalNN(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(EmotionalNN, self).__init__() self.attention = nn.MultiheadAttention(hidden_size, num_heads=8) self.layers = nn.Sequential( nn.Linear(input_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, output_size), nn.Softmax(dim=1) ) def forward(self, x): x, _ = self.attention(x, x, x) return self.layers(x) # Initialize and train the Emotional Neural Network input_size = contexts_encoded.shape[1] hidden_size = 512 output_size = len(emotion_classes) emotional_nn = EmotionalNN(input_size, hidden_size, output_size).to(device) # Quantization emotional_nn_quantized = quantize_dynamic(emotional_nn, {nn.Linear}, dtype=torch.qint8) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(emotional_nn_quantized.parameters(), lr=0.001) # Train the Emotional Neural Network num_epochs = 5000 for epoch in range(num_epochs): inputs = torch.FloatTensor(contexts_encoded).to(device) targets = torch.LongTensor(emotions_target).to(device) outputs = emotional_nn_quantized(inputs) loss = criterion(outputs, targets) optimizer.zero_grad() loss.backward() optimizer.step() # Export to ONNX for inference optimization dummy_input = torch.randn(1, input_size, device=device) torch.onnx.export(emotional_nn_quantized, dummy_input, "emotional_nn.onnx") # ONNX Runtime inference session ort_session = onnxruntime.InferenceSession("emotional_nn.onnx") # Emotional States emotions = { 'joy': {'percentage': 10, 'motivation': 'positive'}, 'pleasure': {'percentage': 10, 'motivation': 'selfish'}, 'sadness': {'percentage': 10, 'motivation': 'negative'}, 'grief': {'percentage': 10, 'motivation': 'negative'}, 'anger': {'percentage': 10, 'motivation': 'traumatic or strong'}, 'calmness': {'percentage': 10, 'motivation': 'neutral'}, 'determination': {'percentage': 10, 'motivation': 'positive'}, 'resentment': {'percentage': 10, 'motivation': 'negative'}, 'glory': {'percentage': 10, 'motivation': 'positive'}, 'motivation': {'percentage': 10, 'motivation': 'positive'}, 'ideal_state': {'percentage': 100, 'motivation': 'balanced'}, 'fear': {'percentage': 10, 'motivation': 'defensive'}, 'surprise': {'percentage': 10, 'motivation': 'unexpected'}, 'anticipation': {'percentage': 10, 'motivation': 'predictive'}, 'trust': {'percentage': 10, 'motivation': 'reliable'}, 'disgust': {'percentage': 10, 'motivation': 'repulsive'}, 'optimism': {'percentage': 10, 'motivation': 'hopeful'}, 'pessimism': {'percentage': 10, 'motivation': 'doubtful'}, 'boredom': {'percentage': 10, 'motivation': 'indifferent'}, 'envy': {'percentage': 10, 'motivation': 'jealous'} } # Adjust all emotions to a total of 200% total_percentage = 200 default_percentage = total_percentage / len(emotions) for emotion in emotions: emotions[emotion]['percentage'] = default_percentage emotion_history_file = 'emotion_history.json' # Load and save historical data functions def load_historical_data(file_path=emotion_history_file): if os.path.exists(file_path): with open(file_path, 'r') as file: return json.load(file) return [] def save_historical_data(historical_data, file_path=emotion_history_file): with open(file_path, 'w') as file: json.dump(historical_data, file) emotion_history = load_historical_data() # Function to update emotions def update_emotion(emotion, percentage): emotions['ideal_state']['percentage'] -= percentage emotions[emotion]['percentage'] += percentage total_current = sum(e['percentage'] for e in emotions.values()) adjustment = total_percentage - total_current emotions['ideal_state']['percentage'] += adjustment # Function to normalize context def normalize_context(context): return context.lower().strip() # Function to evolve emotions using genetic algorithm def evolve_emotions(): def evaluate(individual): ideal_state = individual[-1] other_emotions = individual[:-1] return abs(ideal_state - 100), sum(other_emotions) creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0)) creator.create("Individual", list, fitness=creator.FitnessMin) toolbox = base.Toolbox() toolbox.register("attribute", lambda: random.uniform(0, 20)) toolbox.register("individual", tools.initCycle, creator.Individual, toolbox.attribute, n=(len(emotions) - 1)) toolbox.register("ideal_state", lambda: random.uniform(80, 120)) toolbox.register("complete_individual", tools.initConcat, creator.Individual, toolbox.individual, toolbox.ideal_state) toolbox.register("population", tools.initRepeat, list, toolbox.complete_individual) toolbox.register("evaluate", evaluate) toolbox.register("mate", tools.cxBlend, alpha=0.5) toolbox.register("mutate", tools.mutGaussian, mu=10, sigma=5, indpb=0.3) toolbox.register("select", tools.selTournament, tournsize=3) population = toolbox.population(n=1000) population, log = algorithms.eaSimple(population, toolbox, cxpb=0.5, mutpb=0.2, ngen=50, verbose=False) best_individual = tools.selBest(population, k=1)[0] for idx, emotion in enumerate(emotions.keys()): emotions[emotion]['percentage'] = best_individual[idx] # Sentiment analysis sentiment_analyzer = pipeline("sentiment-analysis") # Sentence embeddings for context-aware emotion tracking sentence_model = SentenceTransformer('all-MiniLM-L6-v2') # Function to get emotional response def get_emotional_response(context): context = normalize_context(context) context_encoded = encoder.transform([[context]]).toarray() # Use ONNX Runtime for inference ort_inputs = {ort_session.get_inputs()[0].name: context_encoded.astype(np.float32)} ort_outputs = ort_session.run(None, ort_inputs) output = ort_outputs[0] predicted_emotion = emotion_classes[np.argmax(output)] # Sentiment analysis sentiment = sentiment_analyzer(context)[0] sentiment_score = sentiment['score'] if sentiment['label'] == 'POSITIVE' else -sentiment['score'] # Context-aware emotion tracking context_embedding = sentence_model.encode(context) # Combine predicted emotion, sentiment, and context emotion_intensity = abs(sentiment_score) * np.max(output) # Update emotions based on prediction and intensity update_emotion(predicted_emotion, emotion_intensity * 20) # Check for anomalies using Isolation Forest anomaly_score = isolation_forest.decision_function([output])[0] if anomaly_score < -0.5: print("Anomalous context detected. Adjusting emotional response.") update_emotion('calmness', 20) # Record the current emotional state in history emotion_state = {emotion: data['percentage'] for emotion, data in emotions.items()} emotion_history.append(emotion_state) save_historical_data(emotion_history) # Print the current emotional state for emotion, data in emotions.items(): print(f"{emotion.capitalize()}: {data['percentage']:.2f}% ({data['motivation']} motivation)") return predicted_emotion, emotion_intensity # Function to handle idle state using genetic algorithm def handle_idle_state(): print("Entering idle state...") evolve_emotions() print("Emotions evolved") for emotion, data in emotions.items(): print(f"{emotion.capitalize()}: {data['percentage']:.2f}% ({data['motivation']} motivation)") # S.O.U.L. (Self-Organizing Universal Learning) Function class SOUL: def __init__(self, model_name='tiiuae/falcon-40b'): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True) self.model.to(device) # Quantization for optimization (INT8) self.model = quantize_dynamic(self.model, {nn.Linear}, dtype=torch.qint8) def generate_text(self, prompt, max_length=200): inputs = self.tokenizer(prompt, return_tensors="pt").to(device) with torch.no_grad(): generate_ids = self.model.generate( inputs.input_ids, max_length=max_length, num_return_sequences=1, no_repeat_ngram_size=2, do_sample=True, top_k=50, top_p=0.95, temperature=0.7 ) return self.tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] def bridge_ai(self, prompt): print("\nFalcon-40B Response:") falcon_response = self.generate_text(prompt) print(falcon_response) print("\nEmotional Response:") emotion, intensity = get_emotional_response(falcon_response) return falcon_response, emotion, intensity # Combine Neural Network and Genetic Algorithm def neural_genetic_convergence(): if len(emotion_history) % 10 == 0: print("Neural-Genetic Convergence...") evolve_emotions() # Train the Emotional Neural Network with new data X = np.array([list(state.values()) for state in emotion_history[-10:]]) y = np.argmax(X, axis=1) optimizer.zero_grad() inputs = torch.FloatTensor(X).to(device) targets = torch.LongTensor(y).to(device) outputs = emotional_nn_quantized(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() print("Convergence complete.") # Emotion-based decision making def emotion_based_decision(emotion, intensity): if intensity > 0.8: if emotion in ['joy', 'excitement']: return "I'm feeling very positive! Let's do something fun!" elif emotion in ['sadness', 'grief']: return "I'm feeling down. I might need some time to process this." elif emotion in ['anger', 'frustration']: return "I'm feeling upset. It might be best to take a break and calm down." elif intensity > 0.5: return f"I'm feeling {emotion} at a moderate level. How about we discuss this further?" else: return f"I'm experiencing a mild sense of {emotion}. What are your thoughts on this?" # Self-reflection and introspection module def self_reflect(): dominant_emotion = max(emotions, key=lambda e: emotions[e]['percentage']) print(f"Self-reflection: My dominant emotion is {dominant_emotion}.") print("Analyzing my recent emotional states...") recent_states = emotion_history[-5:] emotion_trends = {} for state in recent_states: for emotion, percentage in state.items(): if emotion not in emotion_trends: emotion_trends[emotion] = [] emotion_trends[emotion].append(percentage) for emotion, trend in emotion_trends.items(): if len(trend) > 1: if trend[-1] > trend[0]: print(f"{emotion} has been increasing.") elif trend[-1] < trend[0]: print(f"{emotion} has been decreasing.") print("Based on this reflection, I should adjust my responses accordingly.") # Adaptive personality traits personality_traits = { 'openness': 0.5, 'conscientiousness': 0.5, 'extraversion': 0.5, 'agreeableness': 0.5, 'neuroticism': 0.5 } def adapt_personality(): for trait in personality_traits: change = random.uniform(-0.1, 0.1) personality_traits[trait] = max(0, min(1, personality_traits[trait] + change)) print("Personality traits adapted:", personality_traits) # Empathy simulation module def simulate_empathy(user_input): user_emotion = TextBlob(user_input).sentiment.polarity if user_emotion > 0.5: print("I sense that you're feeling positive. That's wonderful!") elif user_emotion < -0.5: print("I can tell you might be feeling down. Is there anything I can do to help?") else: print("I'm here to listen and support you, whatever you're feeling.") # Dream-like state for offline learning def dream_state(): print("Entering dream-like state for offline learning...") dream_contexts = [ "flying through clouds", "solving complex puzzles", "exploring ancient ruins", "conversing with historical figures", "inventing new technologies" ] for context in dream_contexts: get_emotional_response(context) print("Dream-like state completed. New insights gained.") # Emotional intelligence scoring def calculate_eq_score(): eq_score = sum(emotions[e]['percentage'] for e in ['empathy', 'self_awareness', 'social_skills']) / 3 print(f"Current Emotional Intelligence Score: {eq_score:.2f}") return eq_score # Multi-modal input processing def process_multimodal_input(): text_input = input("You (text): ") # Speech recognition r = sr.Recognizer() with sr.Microphone() as source: print("Speak now...") audio = r.listen(source) try: voice_input = r.recognize_google(audio) print(f"Voice input: {voice_input}") except sr.UnknownValueError: voice_input = None print("Voice input not recognized") # Image processing image_path = input("Enter path to image (or press enter to skip): ") if image_path: image = cv2.imread(image_path) if image is not None: # Perform basic image analysis (e.g., dominant color) average_color = np.mean(image, axis=(0, 1)) image_input = f"Image with dominant color: RGB({average_color[2]:.0f}, {average_color[1]:.0f}, {average_color[0]:.0f})" print(image_input) else: image_input = None print("Failed to process image") else: image_input = None combined_input = f"{text_input} {voice_input or ''} {image_input or ''}" return combined_input.strip() # Multi-language support translator = Translator() def translate_input(text, target_language='en'): translated = translator.translate(text, dest=target_language) return translated.text # Main interaction loop soul = SOUL() print("Welcome to the advanced SOUL AI. Type 'exit' to end the conversation.") conversation_turn = 0 while True: user_input = process_multimodal_input() if user_input.lower() == 'exit': print("Thank you for the conversation. Goodbye!") break conversation_turn += 1 # Multi-language processing translated_input = translate_input(user_input) response, emotion, intensity = soul.bridge_ai(translated_input) decision = emotion_based_decision(emotion, intensity) print("AI Decision:", decision) simulate_empathy(user_input) neural_genetic_convergence() if conversation_turn % 10 == 0: adapt_personality() calculate_eq_score() if conversation_turn % 20 == 0: self_reflect() dream_state() # Simulate idle state every 5 interactions if conversation_turn % 5 == 0: handle_idle_state() # End of script if __name__ == "__main__": # Initialize isolation forest historical_data = np.array([emotional_nn_quantized(torch.FloatTensor(contexts_encoded).to(device)).detach().cpu().numpy()]) isolation_forest = IsolationForest(contamination=0.1, random_state=42) isolation_forest.fit(historical_data) # Run the main interaction loop try: # Main interaction loop is already defined above pass except Exception as e: print(f"An error occurred: {e}") finally: print("SOUL AI is shutting down. Final self-reflection:") self_reflect() print("Thank you for using SOUL AI. Goodbye!")