--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # MARTINI_enrich_BERTopic_TruthIsStillHateSpeech This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_TruthIsStillHateSpeech") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 10 * Number of training documents: 820
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | jews - whites - racist - diversity - russia | 20 | -1_jews_whites_racist_diversity | | 0 | antisemitism - jew - mossad - lbj - victims | 418 | 0_antisemitism_jew_mossad_lbj | | 1 | racism - whites - supremacy - globohomo - republican | 87 | 1_racism_whites_supremacy_globohomo | | 2 | lgbtq - pedophile - fundamentalism - california - satanic | 73 | 2_lgbtq_pedophile_fundamentalism_california | | 3 | technocracy - vaxxed - plandemic - conspiracy - china | 57 | 3_technocracy_vaxxed_plandemic_conspiracy | | 4 | britons - whites - colonisation - wales - populations | 45 | 4_britons_whites_colonisation_wales | | 5 | rapist - muslims - riots - abused - leicester | 38 | 5_rapist_muslims_riots_abused | | 6 | zelenskyy - ukrainians - crimea - volodymyr - holocaust | 34 | 6_zelenskyy_ukrainians_crimea_volodymyr | | 7 | hitler - nationalsozialistiche - comrades - 1936 - chapter | 24 | 7_hitler_nationalsozialistiche_comrades_1936 | | 8 | zionist - refugees - jewry - multiculturalism - hias | 24 | 8_zionist_refugees_jewry_multiculturalism |
## Training hyperparameters * calculate_probabilities: True * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 1.26.4 * HDBSCAN: 0.8.40 * UMAP: 0.5.7 * Pandas: 2.2.3 * Scikit-Learn: 1.5.2 * Sentence-transformers: 3.3.1 * Transformers: 4.46.3 * Numba: 0.60.0 * Plotly: 5.24.1 * Python: 3.10.12