--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # MARTINI_enrich_BERTopic_TruthHammer This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_TruthHammer") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 18 * Number of training documents: 1748
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | biden - fbi - military - truth - flynn | 25 | -1_biden_fbi_military_truth | | 0 | ballots - falsified - georgia - raffensperger - audit | 976 | 0_ballots_falsified_georgia_raffensperger | | 1 | globalists - illuminati - fauci - news - hearst | 107 | 1_globalists_illuminati_fauci_news | | 2 | truthhammer - haha - bitches - hopefully - scammers | 86 | 2_truthhammer_haha_bitches_hopefully | | 3 | twitter - musk - carlson - censorship - revealed | 74 | 3_twitter_musk_carlson_censorship | | 4 | transphobia - pervert - backlash - terrorists - liberal | 64 | 4_transphobia_pervert_backlash_terrorists | | 5 | god - prayers - miracles - freedom - lucifer | 50 | 5_god_prayers_miracles_freedom | | 6 | donald - speaker - mccarthy - jim - meme | 43 | 6_donald_speaker_mccarthy_jim | | 7 | desantis - ronnie - desanctimonious - loser - nominee | 42 | 7_desantis_ronnie_desanctimonious_loser | | 8 | perjury - indicted - pelosi - j6 - footage | 39 | 8_perjury_indicted_pelosi_j6 | | 9 | rfk - democrats - bernie - bannon - potentially | 35 | 9_rfk_democrats_bernie_bannon | | 10 | doj - prosecutions - durham - whatchagonnadoaboutit - unsubstantiated | 33 | 10_doj_prosecutions_durham_whatchagonnadoaboutit | | 11 | fakemocracy - president - amendments - tucker - polk | 32 | 11_fakemocracy_president_amendments_tucker | | 12 | hamas - gaza - israeli - atrocities - civilians | 31 | 12_hamas_gaza_israeli_atrocities | | 13 | ukraine - zelensky - kakhovka - sabotaged - headlines | 30 | 13_ukraine_zelensky_kakhovka_sabotaged | | 14 | biden - whistleblower - bribery - investigations - ukraine | 27 | 14_biden_whistleblower_bribery_investigations | | 15 | nani - lahaina - governor - sister - oprah | 27 | 15_nani_lahaina_governor_sister | | 16 | truthhammershop - shirts - mug - order - honduras | 27 | 16_truthhammershop_shirts_mug_order |
## Training hyperparameters * calculate_probabilities: True * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 1.26.4 * HDBSCAN: 0.8.40 * UMAP: 0.5.7 * Pandas: 2.2.3 * Scikit-Learn: 1.5.2 * Sentence-transformers: 3.3.1 * Transformers: 4.46.3 * Numba: 0.60.0 * Plotly: 5.24.1 * Python: 3.10.12