--- license: apache-2.0 datasets: - AIAT/Kiddee-data1234 language: - th - en metrics: - accuracy library_name: transformers pipeline_tag: table-question-answering tags: - code --- --- ## license: apache-2.0 ![KIDDEE](https://media.discordapp.net/attachments/1226897965927497818/1235837202945151016/KIDDEE-Logoo.png?ex=6635d295&is=66348115&hm=8ea3f9706dcdc7b459919d03d5bdb59c06912425efcff8f3979efa93c9e7549e&=&format=webp&quality=lossless&width=437&height=437) ## Datasets: - AIAT/Kiddee-data1234 - (https://huggingface.co/datasets/AIAT/Kiddee-data1234) ## language: - th - en ## metrics: - accuracy 0.53 - response time 2.440 ## pipeline_tag: - table-question-answering ## tags: - OpenthaiGPT-13b - LLMModel # KIDDEE STRONG MUSCLE LLM This repository contains code and resources for building a Question Answering (QA) system using the Retrieval-Augmented Generation (RAG) approach with the Language Learning Model (LLM). ## Introduction RAG-QA combines the power of retrieval-based models with generative models to provide accurate and diverse answers to a given question. LLM, a state-of-the-art language model, is used for generation within the RAG framework. ## Features - **RAG architecture**: Integration of retrieval and generation models. - **LLM**: Powerful language generation capabilities. - **Question Answering**: Ability to answer questions based on given contexts. - **Scalable**: Easily scalable for large datasets and complex questions. - **Diverse Responses**: Provides diverse responses for a given question through generation. ## Setup 1. Clone this repository: # I'm not going to tell you # sponser ![image/png](https://media.discordapp.net/attachments/1226897965927497818/1235842881520930857/image.png?ex=6635d7df&is=6634865f&hm=be4eb57b51de9f52f0817a88fdd2461b5312d0a013bd022630b2a8dde717976f&=&format=webp&quality=lossless&width=687&height=402) library_name: adapter-transformers ---