--- base_model: AI-Sweden-Models/gpt-sw3-6.7b-v2-instruct language: - sv - da - 'no' - en pipeline_tag: text-generation inference: parameters: temperature: 0.7 tags: - translation --- # Model Card for gpt-sw3-6.7b-v2-translator The `gpt-sw3-6.7b-v2-translator` is a finetuned version of `gpt-sw3-6.7b-v2-instruct` on a carefully selected translation pair dataset that was gathered by AI Sweden. ## Intended usage: Translate text data from English to Swedish, or Swedish to English. ## How to use: ```python import torch from transformers import pipeline, StoppingCriteriaList, StoppingCriteria device = "cuda" if torch.cuda.is_available() else "cpu" # (Optional) - define a stopping criteria # We ideally want the model to stop generate once the response from the Bot is generated class StopOnTokenCriteria(StoppingCriteria): def __init__(self, stop_token_id): self.stop_token_id = stop_token_id def __call__(self, input_ids, scores, **kwargs): return input_ids[0, -1] == self.stop_token_id pipe = pipeline( task="text-generation", model="AI-Sweden-Models/gpt-sw3-6.7b-v2-translator", device=device ) stop_on_token_criteria = StopOnTokenCriteria(stop_token_id=pipe.tokenizer.bos_token_id) text = "I like to eat ice cream in the summer." # This will translate English to Swedish # To translate from Swedish to English the prompt would be: # prompt = f"<|endoftext|>User: Översätt till Engelska från Svenska\n{text}Bot:" prompt = f"<|endoftext|>User: Översätt till Svenska från Engelska\n{text}Bot:" input_tokens = pipe.tokenizer(prompt, return_tensors="pt").input_ids.to(device) max_model_length = 2048 dynamic_max_length = max_model_length - input_tokens.shape[1] response = pipe( prompt, max_length=dynamic_max_length, truncation=True, stopping_criteria=StoppingCriteriaList([stop_on_token_criteria]) ) print(response[0]["generated_text"].split("Bot: ")[-1]) ``` ```python >>> "Jag tycker om att äta glass på sommaren." ``` ## Training & Data: The training was done on 1 NVIDIA DGX using DeepSpeed ZeRO 3 for three epochs on roughly 4GB of carefully selected translation data. It is a full finetune of all of the model parameters. | Epoch | Training Loss | Evaluation Loss | |-------|---------------|-----------------| | 1 | 1.309 | 1.281 | | 2 | 1.161 | 1.242 | | 3 | 1.053 | 1.219 |