--- license: other base_model: deepseek-ai/deepseek-math-7b-base tags: - alignment-handbook - generated_from_trainer datasets: - AI-MO/numina-problems-sft-v1.7-preproc model-index: - name: sft_deepseek-math-7b_aimo_v31.24 results: [] --- # sft_deepseek-math-7b_aimo_v31.24 This model is a fine-tuned version of [deepseek-ai/deepseek-math-7b-base](https://huggingface.co/deepseek-ai/deepseek-math-7b-base) on the AI-MO/numina-problems-sft-v1.7-preproc dataset. It achieves the following results on the evaluation set: - Loss: 0.4538 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.4649 | 1.0 | 6954 | 0.4518 | | 0.4026 | 2.0 | 13908 | 0.4403 | | 0.3461 | 3.0 | 20862 | 0.4538 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1