--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: deberta-v3-large-finetuned-ner-10epochs-V2 results: [] --- # deberta-v3-large-finetuned-ner-10epochs-V2 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1180 - Precision: 0.9033 - Recall: 0.9347 - F1: 0.9187 - Accuracy: 0.9813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0663 | 1.0 | 2261 | 0.0715 | 0.8709 | 0.9194 | 0.8945 | 0.9787 | | 0.0583 | 2.0 | 4522 | 0.0629 | 0.8845 | 0.9267 | 0.9051 | 0.9800 | | 0.0442 | 3.0 | 6783 | 0.0635 | 0.8841 | 0.9404 | 0.9114 | 0.9802 | | 0.0402 | 4.0 | 9044 | 0.0588 | 0.9011 | 0.9283 | 0.9145 | 0.9821 | | 0.0327 | 5.0 | 11305 | 0.0676 | 0.8919 | 0.9385 | 0.9146 | 0.9818 | | 0.0245 | 6.0 | 13566 | 0.0713 | 0.9037 | 0.9331 | 0.9182 | 0.9821 | | 0.0183 | 7.0 | 15827 | 0.0848 | 0.9049 | 0.9181 | 0.9114 | 0.9812 | | 0.0157 | 8.0 | 18088 | 0.0898 | 0.8957 | 0.9411 | 0.9178 | 0.9818 | | 0.009 | 9.0 | 20349 | 0.1027 | 0.8965 | 0.9385 | 0.9170 | 0.9817 | | 0.0068 | 10.0 | 22610 | 0.1180 | 0.9033 | 0.9347 | 0.9187 | 0.9813 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3