--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: deberta-v3-large-ad-opentag-finetuned-ner-2epochs results: [] --- # deberta-v3-large-ad-opentag-finetuned-ner-2epochs This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0023 - Precision: 0.9843 - Recall: 0.9911 - F1: 0.9877 - Accuracy: 0.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0041 | 1.0 | 8909 | 0.0036 | 0.9746 | 0.9838 | 0.9792 | 0.9993 | | 0.0032 | 2.0 | 17818 | 0.0023 | 0.9843 | 0.9911 | 0.9877 | 0.9996 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3