ABDALLALSWAITI commited on
Commit
a75c199
·
verified ·
1 Parent(s): 7608036

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -174
README.md CHANGED
@@ -1,198 +1,92 @@
1
  ---
2
- library_name: diffusers
3
- ---
4
-
5
- # Model Card for Model ID
6
-
7
- <!-- Provide a quick summary of what the model is/does. -->
8
-
9
-
10
-
11
- ## Model Details
12
-
13
- ### Model Description
14
-
15
- <!-- Provide a longer summary of what this model is. -->
16
-
17
- This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.
18
-
19
- - **Developed by:** [More Information Needed]
20
- - **Funded by [optional]:** [More Information Needed]
21
- - **Shared by [optional]:** [More Information Needed]
22
- - **Model type:** [More Information Needed]
23
- - **Language(s) (NLP):** [More Information Needed]
24
- - **License:** [More Information Needed]
25
- - **Finetuned from model [optional]:** [More Information Needed]
26
-
27
- ### Model Sources [optional]
28
-
29
- <!-- Provide the basic links for the model. -->
30
-
31
- - **Repository:** [More Information Needed]
32
- - **Paper [optional]:** [More Information Needed]
33
- - **Demo [optional]:** [More Information Needed]
34
-
35
- ## Uses
36
-
37
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
-
39
- ### Direct Use
40
-
41
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
-
43
- [More Information Needed]
44
-
45
- ### Downstream Use [optional]
46
-
47
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
-
49
- [More Information Needed]
50
-
51
- ### Out-of-Scope Use
52
-
53
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
-
55
- [More Information Needed]
56
-
57
- ## Bias, Risks, and Limitations
58
-
59
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
-
61
- [More Information Needed]
62
-
63
- ### Recommendations
64
-
65
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
-
67
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
-
69
- ## How to Get Started with the Model
70
-
71
- Use the code below to get started with the model.
72
-
73
- [More Information Needed]
74
-
75
- ## Training Details
76
-
77
- ### Training Data
78
-
79
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
-
81
- [More Information Needed]
82
-
83
- ### Training Procedure
84
-
85
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
-
87
- #### Preprocessing [optional]
88
-
89
- [More Information Needed]
90
-
91
-
92
- #### Training Hyperparameters
93
-
94
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
-
96
- #### Speeds, Sizes, Times [optional]
97
-
98
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
-
100
- [More Information Needed]
101
-
102
- ## Evaluation
103
-
104
- <!-- This section describes the evaluation protocols and provides the results. -->
105
-
106
- ### Testing Data, Factors & Metrics
107
-
108
- #### Testing Data
109
-
110
- <!-- This should link to a Dataset Card if possible. -->
111
-
112
- [More Information Needed]
113
-
114
- #### Factors
115
-
116
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Metrics
121
-
122
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
-
124
- [More Information Needed]
125
-
126
- ### Results
127
-
128
- [More Information Needed]
129
-
130
- #### Summary
131
-
132
-
133
-
134
- ## Model Examination [optional]
135
-
136
- <!-- Relevant interpretability work for the model goes here -->
137
-
138
- [More Information Needed]
139
-
140
- ## Environmental Impact
141
-
142
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
-
144
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
-
146
- - **Hardware Type:** [More Information Needed]
147
- - **Hours used:** [More Information Needed]
148
- - **Cloud Provider:** [More Information Needed]
149
- - **Compute Region:** [More Information Needed]
150
- - **Carbon Emitted:** [More Information Needed]
151
-
152
- ## Technical Specifications [optional]
153
 
154
- ### Model Architecture and Objective
 
155
 
156
- [More Information Needed]
157
 
158
- ### Compute Infrastructure
159
 
160
- [More Information Needed]
161
 
162
- #### Hardware
163
 
164
- [More Information Needed]
165
 
166
- #### Software
167
 
168
- [More Information Needed]
169
 
170
- ## Citation [optional]
171
 
172
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
173
 
174
- **BibTeX:**
 
 
 
175
 
176
- [More Information Needed]
177
 
178
- **APA:**
 
 
 
 
 
 
 
 
 
179
 
180
- [More Information Needed]
 
 
181
 
182
- ## Glossary [optional]
 
 
183
 
184
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
 
185
 
186
- [More Information Needed]
 
187
 
188
- ## More Information [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
 
190
- [More Information Needed]
 
 
191
 
192
- ## Model Card Authors [optional]
 
193
 
194
- [More Information Needed]
 
 
195
 
196
- ## Model Card Contact
 
 
 
 
197
 
198
- [More Information Needed]
 
1
  ---
2
+ ## license: creativeml-openrail-m
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
+ This model may be used by individuals for personal and commercial purposes, including generating and selling images.
5
+ Commercial use by companies or organizations is strictly prohibited.
6
 
 
7
 
 
8
 
9
+ # Maxwell Model
10
 
11
+ ## Acknowledgements
12
 
13
+ Firstly, a big thanks to [@sayakpaul](https://huggingface.co/sayakpaul) who fixed most issues we were facing with Diffusers.
14
 
15
+ ## Installation
16
 
17
+ 1. Download the repository at the same level as the generative code.
18
 
19
+ 2. Install the required packages:
20
 
21
+ ```bash
22
+ pip install torch accelerate safetensors diffusers huggingface_hub huggingface_hub bitsandbytes transformers
23
 
24
+ ```
25
+ install [convert_nf4_flux.py](https://huggingface.co/ABDALLALSWAITI/Maxwell/resolve/main/convert_nf4_flux.py?download=true)
26
+ @same level of Generative Code
27
+ ## Usage
28
 
29
+ Run the following Python code:
30
 
31
+ ```python
32
+ # Generative Code
33
+ from huggingface_hub import hf_hub_download
34
+ from accelerate.utils import set_module_tensor_to_device, compute_module_sizes
35
+ from accelerate import init_empty_weights
36
+ from convert_nf4_flux import replace_with_bnb_linear, create_quantized_param, check_quantized_param
37
+ from diffusers import FluxTransformer2DModel, FluxPipeline
38
+ import safetensors.torch
39
+ import gc
40
+ import torch
41
 
42
+ # Set dtype and check for float8 support
43
+ dtype = torch.bfloat16
44
+ is_torch_e4m3fn_available = hasattr(torch, "float8_e4m3fn")
45
 
46
+ # Download the model checkpoint
47
+ ckpt_path = hf_hub_download("ABDALLALSWAITI/Maxwell", filename="diffusion_pytorch_model.safetensors")
48
+ original_state_dict = safetensors.torch.load_file(ckpt_path)
49
 
50
+ # Initialize the model with empty weights
51
+ with init_empty_weights():
52
+ config = FluxTransformer2DModel.load_config("ABDALLALSWAITI/Maxwell")
53
+ model = FluxTransformer2DModel.from_config(config).to(dtype)
54
+ expected_state_dict_keys = list(model.state_dict().keys())
55
 
56
+ # Replace layers with NF4 quantized versions
57
+ replace_with_bnb_linear(model, "nf4")
58
 
59
+ # Load the state dict into the quantized model
60
+ for param_name, param in original_state_dict.items():
61
+ if param_name not in expected_state_dict_keys:
62
+ continue
63
+
64
+ is_param_float8_e4m3fn = is_torch_e4m3fn_available and param.dtype == torch.float8_e4m3fn
65
+ if torch.is_floating_point(param) and not is_param_float8_e4m3fn:
66
+ param = param.to(dtype)
67
+
68
+ if not check_quantized_param(model, param_name):
69
+ set_module_tensor_to_device(model, param_name, device=0, value=param)
70
+ else:
71
+ create_quantized_param(
72
+ model, param, param_name, target_device=0, state_dict=original_state_dict, pre_quantized=True
73
+ )
74
 
75
+ # Clean up
76
+ del original_state_dict
77
+ gc.collect()
78
 
79
+ # Print model size
80
+ print(compute_module_sizes(model)[""] / 1024 / 1204)
81
 
82
+ # Initialize the pipeline
83
+ pipe = FluxPipeline.from_pretrained("black-forest-labs/flux.1-dev", transformer=model, torch_dtype=dtype)
84
+ pipe.enable_model_cpu_offload()
85
 
86
+ # Generate an image from a prompt
87
+ prompt = "A mystic Tiger in with sign that says hello world!"
88
+ image = pipe(prompt, guidance_scale=0.0, num_inference_steps=4, generator=torch.manual_seed(0)).images[0]
89
+ image.save("simple.png")
90
+ ```
91
 
92
+ This code will download the Maxwell model, initialize it with NF4 quantization, and generate an image based on the given prompt.