File size: 7,421 Bytes
320e69e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import matplotlib
matplotlib.use("Agg")
from matplotlib import pyplot as plt
from scipy.io import wavfile
from vocoder.vocgan_generator import Generator
import hparams as hp
import os
import text
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def get_alignment(tier):
sil_phones = ['sil', 'sp', 'spn']
phones = []
durations = []
start_time = 0
end_time = 0
end_idx = 0
for t in tier._objects:
s, e, p = t.start_time, t.end_time, t.text
# Trimming leading silences
if phones == []:
if p in sil_phones:
continue
else:
start_time = s
if p not in sil_phones:
phones.append(p)
end_time = e
end_idx = len(phones)
else:
phones.append(p)
durations.append(int(e*hp.sampling_rate/hp.hop_length)-int(s*hp.sampling_rate/hp.hop_length))
# Trimming tailing silences
phones = phones[:end_idx]
durations = durations[:end_idx]
return phones, np.array(durations), start_time, end_time
def process_meta(meta_path):
with open(meta_path, "r", encoding="utf-8") as f:
text = []
name = []
for line in f.readlines():
n, t = line.strip('\n').split('|')
name.append(n)
text.append(t)
return name, text
def get_param_num(model):
num_param = sum(param.numel() for param in model.parameters())
return num_param
def plot_data(data, titles=None, filename=None):
fig, axes = plt.subplots(len(data), 1, squeeze=False)
if titles is None:
titles = [None for i in range(len(data))]
def add_axis(fig, old_ax, offset=0):
ax = fig.add_axes(old_ax.get_position(), anchor='W')
ax.set_facecolor("None")
return ax
for i in range(len(data)):
spectrogram, pitch, energy = data[i]
axes[i][0].imshow(spectrogram, origin='lower')
axes[i][0].set_aspect(2.5, adjustable='box')
axes[i][0].set_ylim(0, hp.n_mel_channels)
axes[i][0].set_title(titles[i], fontsize='medium')
axes[i][0].tick_params(labelsize='x-small', left=False, labelleft=False)
axes[i][0].set_anchor('W')
ax1 = add_axis(fig, axes[i][0])
ax1.plot(pitch, color='tomato')
ax1.set_xlim(0, spectrogram.shape[1])
ax1.set_ylim(0, hp.f0_max)
ax1.set_ylabel('F0', color='tomato')
ax1.tick_params(labelsize='x-small', colors='tomato', bottom=False, labelbottom=False)
ax2 = add_axis(fig, axes[i][0], 1.2)
ax2.plot(energy, color='darkviolet')
ax2.set_xlim(0, spectrogram.shape[1])
ax2.set_ylim(hp.energy_min, hp.energy_max)
ax2.set_ylabel('Energy', color='darkviolet')
ax2.yaxis.set_label_position('right')
ax2.tick_params(labelsize='x-small', colors='darkviolet', bottom=False, labelbottom=False, left=False, labelleft=False, right=True, labelright=True)
plt.savefig(filename, dpi=200)
plt.close()
def get_mask_from_lengths(lengths, max_len=None):
batch_size = lengths.shape[0]
if max_len is None:
max_len = torch.max(lengths).item()
ids = torch.arange(0, max_len).unsqueeze(0).expand(batch_size, -1).to(device)
mask = (ids >= lengths.unsqueeze(1).expand(-1, max_len))
return mask
def get_vocgan(ckpt_path, n_mel_channels=hp.n_mel_channels, generator_ratio = [4, 4, 2, 2, 2, 2], n_residual_layers=4, mult=256, out_channels=1):
checkpoint = torch.load(ckpt_path)
model = Generator(n_mel_channels, n_residual_layers,
ratios=generator_ratio, mult=mult,
out_band=out_channels)
model.load_state_dict(checkpoint['model_g'])
model.to(device).eval()
return model
def get_vocoder():
pass
def vocgan_infer(mel, vocoder, path):
model = vocoder
with torch.no_grad():
if len(mel.shape) == 2:
mel = mel.unsqueeze(0)
audio = model.infer(mel).squeeze()
audio = hp.max_wav_value * audio[:-(hp.hop_length*10)]
audio = audio.clamp(min=-hp.max_wav_value, max=hp.max_wav_value-1)
audio = audio.short().cpu().detach().numpy()
wavfile.write(path, hp.sampling_rate, audio)
def pad_1D(inputs, PAD=0):
def pad_data(x, length, PAD):
x_padded = np.pad(x, (0, length - x.shape[0]),
mode='constant',
constant_values=PAD)
return x_padded
max_len = max((len(x) for x in inputs))
padded = np.stack([pad_data(x, max_len, PAD) for x in inputs])
return padded
def pad_2D(inputs, maxlen=None):
def pad(x, max_len):
PAD = 0
if np.shape(x)[0] > max_len:
raise ValueError("not max_len")
s = np.shape(x)[1]
x_padded = np.pad(x, (0, max_len - np.shape(x)[0]),
mode='constant',
constant_values=PAD)
return x_padded[:, :s]
if maxlen:
output = np.stack([pad(x, maxlen) for x in inputs])
else:
max_len = max(np.shape(x)[0] for x in inputs)
output = np.stack([pad(x, max_len) for x in inputs])
return output
def pad(input_ele, mel_max_length=None):
if mel_max_length:
max_len = mel_max_length
else:
max_len = max([input_ele[i].size(0)for i in range(len(input_ele))])
out_list = list()
for i, batch in enumerate(input_ele):
if len(batch.shape) == 1:
one_batch_padded = F.pad(
batch, (0, max_len-batch.size(0)), "constant", 0.0)
elif len(batch.shape) == 2:
one_batch_padded = F.pad(
batch, (0, 0, 0, max_len-batch.size(0)), "constant", 0.0)
out_list.append(one_batch_padded)
out_padded = torch.stack(out_list)
return out_padded
# from dathudeptrai's FastSpeech2 implementation
def standard_norm(x, mean, std, is_mel=False):
if not is_mel:
x = remove_outlier(x)
zero_idxs = np.where(x == 0.0)[0]
x = (x - mean) / std
x[zero_idxs] = 0.0
return x
return (x - mean) / std
def de_norm(x, mean, std):
zero_idxs = torch.where(x == 0.0)[0]
x = mean + std * x
x[zero_idxs] = 0.0
return x
def _is_outlier(x, p25, p75):
"""Check if value is an outlier."""
lower = p25 - 1.5 * (p75 - p25)
upper = p75 + 1.5 * (p75 - p25)
return np.logical_or(x <= lower, x >= upper)
def remove_outlier(x):
"""Remove outlier from x."""
p25 = np.percentile(x, 25)
p75 = np.percentile(x, 75)
indices_of_outliers = []
for ind, value in enumerate(x):
if _is_outlier(value, p25, p75):
indices_of_outliers.append(ind)
x[indices_of_outliers] = 0.0
# replace by mean f0.
x[indices_of_outliers] = np.max(x)
return x
def average_by_duration(x, durs):
mel_len = durs.sum()
durs_cum = np.cumsum(np.pad(durs, (1, 0)))
# calculate charactor f0/energy
x_char = np.zeros((durs.shape[0],), dtype=np.float32)
for idx, start, end in zip(range(mel_len), durs_cum[:-1], durs_cum[1:]):
values = x[start:end][np.where(x[start:end] != 0.0)[0]]
x_char[idx] = np.mean(values) if len(values) > 0 else 0.0 # np.mean([]) = nan.
return x_char.astype(np.float32)
|